Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

1.
I.
Shmulevich
,
E. R.
Dougherty
, and
W.
Zhang
, “
From Boolean to probabilistic Boolean networks as models of genetic regulatory networks
,”
Proc. IEEE
90
,
1778
1792
(
2002
).
2.
S. A.
Kauffman
, “
Metabolic stability and epigenesis in randomly constructed genetic nets
,”
J. Theor. Biol.
22
,
437
467
(
1969
).
3.
S.
Huang
and
D. E.
Ingber
, “
Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks
,”
Exp. Cell Res.
261
,
91
103
(
2000
).
4.
S. A.
Kauffman
and
E. D.
Weinberger
, “
The NK model of rugged fitness landscapes and its application to maturation of the immune response
,”
J. Theor. Biol.
141
,
211
245
(
1989
).
5.
S.
Bornholdt
and
K.
Sneppen
, “
Neutral mutations and punctuated equilibrium in evolving genetic networks
,”
Phys. Rev. Lett.
81
,
236
239
(
1998
).
6.
M. D.
Stern
, “
Emergence of homeostasis and ‘noise imprinting’ in an evolution model
,”
Proc. Natl. Acad. Sci. U.S.A.
96
,
10746
10751
(
1999
).
7.
S.
Bornholdt
and
K.
Sneppen
, “
Robustness as an evolutionary principle
,”
Proc. R. Soc. London, Ser. B
267
,
2281
2286
(
2000
).
8.
K. E.
Kürten
, “
Correspondence between neural threshold networks and Kauffman Boolean cellular automata
,”
J. Phys. A: Math. Gen.
21
,
L615
L619
(
1988
).
9.
S.
Bornholdt
and
T.
Rohlf
, “
Topological evolution of dynamical networks: Global criticality from local dynamics
,”
Phys. Rev. Lett.
84
,
6114
6117
(
2000
).
10.
R.
Albert
and
H. G.
Othmer
, “
The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster
,”
J. Theor. Biol.
223
,
1
18
(
2003
).
11.
S.
Kauffman
,
C.
Peterson
,
B.
Samuelsson
, and
C.
Troein
, “
Random Boolean network models and the yeast transcriptional network
,”
Proc. Natl. Acad. Sci. U.S.A.
100
,
14796
14799
(
2003
).
12.
F.
Li
,
T.
Long
,
Y.
Lu
,
Q.
Ouyang
, and
C.
Tang
, “
The yeast cell-cycle network is robustly designed
,”
Proc. Natl. Acad. Sci. U.S.A.
101
,
4781
4786
(
2004
).
13.
M.
Chaves
,
R.
Albert
, and
E. D.
Sontag
, “
Robustness and fragility of Boolean models for genetic regulatory networks
,”
J. Theor. Biol.
235
,
431
449
(
2005
).
14.
A.
Chaos
,
M.
Aldana
,
C.
Espinosa-Soto
,
B. G. P.
de León
,
A. G.
Arroyo
, and
E. R.
Alvarez-Buylla
, “
From genes to flower patterns and evolution: Dynamic models of gene regulatory networks
,”
J. Plant Growth Regul.
25
,
278
289
(
2006
).
15.
C. J.
Langmead
and
S. K.
Jha
, “
Symbolic approaches for finding control strategies in Boolean networks
,”
J. Bioinf. Comput. Biol.
7
,
323
338
(
2009
).
16.
K.
Kobayashi
and
K.
Hiraishi
, “
Symbolic approach to verification and control of deterministic/probabilistic Boolean networks
,”
IET Syst. Biol.
6
,
215
222
(
2012
).
17.
D.
Cheng
,
H.
Qi
, and
Z.
Li
,
Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach
(
Springer-Verlag
,
London
,
2011
).
18.
R.
Li
and
T.
Chu
, “
Complete synchronization of Boolean networks
,”
IEEE Trans. Neural Networks Learn. Syst.
23
,
840
846
(
2012
).
19.
R.
Li
and
T.
Chu
, “
Synchronization in an array of coupled Boolean networks
,”
Phys. Lett. A
376
,
3071
3075
(
2012
).
20.
M.
Yang
and
T.
Chu
, “
Evaluation of attractors and basins of asynchronous random Boolean networks
,”
Phys. Rev. E
85
,
056105
(
2012
).
21.
X.
Xu
and
Y.
Hong
, “
Solvability and control design for synchronization of Boolean networks
,”
J. Syst. Sci. Complex.
26
,
871
885
(
2013
).
22.
H.
Li
and
Y.
Wan
, “
Consistent stabilizability of switched Boolean networks
,”
Neural Networks
46
,
183
189
(
2013
).
23.
C.
Luo
and
X.
Wang
, “
Dynamics of random Boolean networks under fully asynchronous stochastic update based on linear representation
,”
PLoS One
8
,
e66491
(
2013
).
24.
F.
Li
and
X.
Lu
, “
Minimum energy control and optimal-satisfactory control of Boolean control network
,”
Phys. Lett. A
377
,
3112
3118
(
2013
).
25.
F.
Li
, “
Synchronization of coupled large-scale Boolean networks
,”
Chaos
24
,
013115
(
2014
).
26.
M.
Yang
,
R.
Li
, and
T.
Chu
, “
Construction of a Boolean model of gene and protein regulatory network with memory
,”
Neural Networks
52
,
18
24
(
2014
).
27.
Y.
Zou
and
J.
Zhu
, “
System decomposition with respect to inputs for Boolean control networks
,”
Automatica
50
,
1304
1309
(
2014
).
28.
H.
Zhang
,
X.
Wang
, and
X.
Lin
, “
Synchronization of Boolean networks with different update schemes
,”
IEEE-ACM Trans. Comput. Biol. Bioinf.
11
,
965
972
(
2014
).
29.
D.
Cheng
and
H.
Qi
, “
Controllability and observability of Boolean control networks
,”
Automatica
45
,
1659
1667
(
2009
).
30.
Y.
Zhao
,
H.
Qi
, and
D.
Cheng
, “
Input-state incidence matrix of Boolean control networks and its applications
,”
Syst. Control Lett.
59
,
767
774
(
2010
).
31.
R.
Li
,
M.
Yang
, and
T.
Chu
, “
Observability conditions of Boolean control networks
,”
Int. J. Robust Nonlinear Control
24
,
2711
2723
(
2014
).
32.
E.
Fornasini
and
M. E.
Valcher
, “
Observability, reconstructibility and state observers of Boolean control networks
,”
IEEE Trans. Autom. Control
58
,
1390
1401
(
2013
).
33.
D.
Laschov
and
M.
Margaliot
, “
Controllability of Boolean control networks via the Perron-Frobenius theory
,”
Automatica
48
,
1218
1223
(
2012
).
34.
K.
Kobayashi
,
J.-I.
Imura
, and
K.
Hiraishi
, “
Polynomial-time algorithm for controllability test of a class of Boolean biological networks
,”
EURASIP J. Bioinf. Syst. Biol.
2010
,
210685
.
35.
F.
Li
and
J.
Sun
, “
Controllability of Boolean control networks with time delays in states
,”
Automatica
47
,
603
607
(
2011
).
36.
F.
Li
,
J.
Sun
, and
Q.-D.
Wu
, “
Observability of Boolean control networks with state time delays
,”
IEEE Trans. Neural Networks
22
,
948
954
(
2011
).
37.
H.
Li
and
Y.
Wang
, “
On reachability and controllability of switched Boolean control networks
,”
Automatica
48
,
2917
2922
(
2012
).
38.
L.
Zhang
,
J.
Feng
, and
J.
Yao
, “
Controllability and observability of switched Boolean control networks
,”
IET Control Theory Appl.
6
,
2477
2484
(
2012
).
39.
C.
Luo
,
X.
Wang
, and
H.
Liu
, “
Controllability of asynchronous Boolean multiplex control networks
,”
Chaos
24
,
033108
(
2014
).
40.
R.
Laubenbacher
and
B.
Stigler
, “
A computational algebra approach to the reverse engineering of gene regulatory networks
,”
J. Theor. Biol.
229
,
523
537
(
2004
).
41.
D.
Nešić
and
I. M. Y.
Mareels
, “
Dead beat controllability of polynomial systems: Symbolic computation approaches
,”
IEEE Trans. Autom. Control
43
,
162
175
(
1998
).
42.
A.
Veliz-Cuba
, “
An algebraic approach to reverse engineering finite dynamical systems arising from biology
,”
SIAM J. Appl. Dyn. Syst.
11
,
31
48
(
2012
).
43.
D.
Cox
,
J.
Little
, and
D.
O'Shea
,
Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra
, 3rd ed. (
Springer
,
New York
,
2007
).
44.
Q.
Zhao
, “
A remark on ‘scalar equations for synchronous Boolean networks with biological applications’ by C. Farrow, J. Heidel, J. Maloney, and J. Rogers
,”
IEEE Trans. Neural Networks
16
,
1715
1716
(
2005
).
45.
T.
Akutsu
,
M.
Hayashida
,
W.-K.
Ching
, and
M. K.
Ng
, “
Control of Boolean networks: Hardness results and algorithms for tree structured networks
,”
J. Theor. Biol.
244
,
670
679
(
2007
).
46.
D.
Laschov
,
M.
Margaliot
, and
G.
Even
, “
Observability of Boolean networks: A graph-theoretic approach
,”
Automatica
49
,
2351
2362
(
2013
).
47.
A.
Veliz-Cuba
,
A. S.
Jarrah
, and
R.
Laubenbacher
, “
Polynomial algebra of discrete models in systems biology
,”
Bioinformatics
26
,
1637
1643
(
2010
).
48.
Y.-Y.
Liu
,
J.-J.
Slotine
, and
A.-L.
Barabási
, “
Controllability of complex networks
,”
Nature
473
,
167
173
(
2011
).
49.
Y.-Y.
Liu
,
J.-J.
Slotine
, and
A.-L.
Barabási
, “
Control centrality and hierarchical structure in complex networks
,”
PLoS One
7
,
e44459
(
2012
).
50.
T.
Jia
,
Y.-Y.
Liu
,
E.
Csóka
,
M.
Pósfai
,
J.-J.
Slotine
, and
A.-L.
Barabási
, “
Emergence of bimodality in controlling complex networks
,”
Nat. Commun.
4
,
2002
(
2013
).
51.
J.
Sun
and
A. E.
Motter
, “
Controllability transition and nonlocality in network control
,”
Phys. Rev. Lett.
110
,
208701
(
2013
).
52.
Y.
Yang
,
J.
Wang
, and
A. E.
Motter
, “
Network observability transitions
,”
Phys. Rev. Lett.
109
,
258701
(
2012
).
53.
Y.-Y.
Liu
,
J.-J.
Slotine
, and
A.-L.
Barabási
, “
Observability of complex systems
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
2460
2465
(
2013
).
54.
J.
Ruths
and
D.
Ruths
, “
Control profiles of complex networks
,”
Science
343
,
1373
1376
(
2014
).
55.
C.
Campbell
,
K.
Shea
, and
R.
Albert
, “
Comment on ‘Control profiles of complex networks’
,”
Science
346
,
561
(
2014
).
56.
S.
Sahasrabudhe
and
A. E.
Motter
, “
Rescuing ecosystems from extinction cascades through compensatory perturbations
,”
Nat. Commun.
2
,
170
(
2011
).
57.
S. P.
Cornelius
,
W. L.
Kath
, and
A. E.
Motter
, “
Realistic control of network dynamics
,”
Nat. Commun.
4
,
1942
(
2013
).
58.
C.
Campbell
and
R.
Albert
, “
Stabilization of perturbed Boolean network attractors through compensatory interactions
,”
BMC Syst. Biol.
8
,
53
(
2014
).
59.
A. S.
Jarrah
and
R.
Laubenbacher
, “
Discrete models of biochemical networks: The toric variety of nested canalyzing functions
,” in
Algebraic Biology
(
Springer
,
Berlin, Heidelberg
,
2007
), pp.
15
22
.
60.
M.
Artin
,
Algebra
(
Prentice-Hall, Inc.
,
Englewood Cliffs, New Jersey
,
1991
).
61.
R.
Li
,
M.
Yang
, and
T.
Chu
, “
State feedback stabilization for Boolean control networks
,”
IEEE Trans. Autom. Control
58
,
1853
1857
(
2013
).
62.
B.
Faryabi
,
G.
Vahedi
,
J.-F.
Chamberland
,
A.
Datta
, and
E. R.
Dougherty
, “
Optimal constrained stationary intervention in gene regulatory networks
,”
EURASIP J. Bioinf. Syst. Biol.
2008
,
620767
.
63.
E. D.
Sontag
, “
On the observability of polynomial systems, I: Finite-time problems
,”
SIAM J. Control Optim.
17
,
139
151
(
1979
).
64.
S.
Klamt
,
J.
Saez-Rodriguez
,
J. A.
Lindquist
,
L.
Simeoni
, and
E. D.
Gilles
, “
A methodology for the structural and functional analysis of signaling and regulatory networks
,”
BMC Bioinf.
7
,
56
(
2006
).
65.
R.
Zhang
,
M. V.
Shah
,
J.
Yang
,
S. B.
Nyland
,
X.
Liu
,
J. K.
Yun
,
R.
Albert
, and
T. P.
Loughran
, Jr.
, “
Network model of survival signaling in large granular lymphocyte leukemia
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
16308
16313
(
2008
).
66.
K.
Willadsen
and
J.
Wiles
, “
Robustness and state-space structure of Boolean gene regulatory models
,”
J. Theor. Biol.
249
,
749
765
(
2007
).
67.
R.
Laubenbacher
,
F.
Hinkelmann
,
D.
Murrugarra
, and
A.
Veliz-Cuba
, “
Algebraic models and their use in systems biology
,” in
Discrete and Topological Models in Molecular Biology
(
Springer
,
Berlin, Heidelberg
,
2014
), pp.
443
474
.
68.
R.-S.
Wang
,
A.
Saadatpour
, and
R.
Albert
, “
Boolean modeling in systems biology: An overview of methodology and applications
,”
Phys. Biol.
9
,
055001
(
2012
).
69.
A.
Saadatpour
,
I.
Albert
, and
R.
Albert
, “
Attractor analysis of asynchronous Boolean models of signal transduction networks
,”
J. Theor. Biol.
266
,
641
656
(
2010
).
You do not currently have access to this content.