The self-similarity conditions of the 3-dimensional (3D) incompressible Navier-Stokes equations are obtained by utilizing one-parameter Lie group of point scaling transformations. It is found that the scaling exponents of length dimensions in i = 1, 2, 3 coordinates in 3-dimensions are not arbitrary but equal for the self-similarity of 3D incompressible Navier-Stokes equations. It is also shown that the self-similarity in this particular flow process can be achieved in different time and space scales when the viscosity of the fluid is also scaled in addition to other flow variables. In other words, the self-similarity of Navier-Stokes equations is achievable under different fluid environments in the same or different gravity conditions. Self-similarity criteria due to initial and boundary conditions are also presented. Utilizing the proposed self-similarity conditions of the 3D hydrodynamic flow process, the value of a flow variable at a specified time and space can be scaled to a corresponding value in a self-similar domain at the corresponding time and space.

1.
Benzi
,
R.
,
Ciliberto
,
S.
,
Tripiccione
,
R.
,
Baudet
,
C.
,
Massaioli
,
F.
, and
Succi
,
S.
, “
Extended self-similarity in turbulent flows
,”
Phys. Rev. E
48
,
R29(R)
(
1993
).
2.
Bluman
,
G. W.
and
Anco
,
S. C.
,
Symmetry and Integration Methods for Differential Equations
, Applied Mathematical Sciences Vol.
154
(
Springer
,
New York
,
2002
).
3.
Bluman
,
C. E.
and
Cole
,
J. D.
,
Similarity Methods for Differential Equations
(
Springer-Verlag
,
New York
,
1974
).
4.
Buckingham
,
E.
, “
On physically similar systems—Illustrations of the use of dimensional equations
,”
Phys. Rev.
4
,
345
376
(
1914
).
5.
Carr
,
K.
,
Ercan
,
A.
, and
Kavvas
,
M. L.
, “
Scaling and self-similarity of one-dimensional unsteady suspended sediment transport with emphasis on unscaled sediment material properties
,”
J. Hydraul. Eng.
141
(
5
),
04015003
(
2015
).
6.
Ercan
,
A.
,
Kavvas
,
M. L.
, and
Haltas
,
I.
, “
Scaling and self-similarity in one-dimensional unsteady open channel flow
,”
Hydrol. Processes
28
(
5
),
2721
2737
(
2014
).
7.
Ercan
,
A.
and
Kavvas
,
M. L.
, “
Scaling and self-similarity in two-dimensional hydrodynamics
,”
Chaos
25
,
075404
(
2015
).
8.
Haltas
,
I.
and
Kavvas
,
M. L.
, “
Scale invariance and self-similarity in hydrologic processes in space and time
,”
J. Hydrol. Eng.
16
(
1
),
51
63
(
2011a
).
9.
Haltas
,
I.
and
Kavvas
,
M. L.
, “
Scale invariance and self-similarity in kinematic wave overland flow in space and time
,”
Hydrol. Processes
25
(
23
),
3659
3665
(
2011b
).
10.
Hurst
,
H. E.
, “
Long-term storage capacity of reservoirs
,”
Trans. Am. Soc. Civ. Eng.
116
,
770
779
(
1951
).
11.
Ibragimov
,
N. H.
,
Handbook of Lie Group Analysis of Differential Equations, Symmetries, Exact Solutions, and Conservation Laws
Vol.
I
(
CRC Press
,
Boca Roton, USA
,
1994
).
12.
Ibragimov
,
N. H.
,
Handbook of Lie Group Analysis of Differential Equations
, Applications in Engineering and Physical Sciences Vol.
II
(
CRC Press
,
Boca Roton, USA
,
1995
).
13.
Kolmogorov
,
A. N.
, “
The local structure of turbulence in incompressible viscous fluid for very large Reynolds number
,”
C. R. Acad. Sci. USSR
30
,
301
(
1941
).
14.
Leray
,
J.
, “
Sur le mouvement d'un liquide visqueux emplissant l'espace
,”
Acta Math.
63
(
1
),
193
248
(
1934
).
15.
Lovejoy
,
S.
and
Schertzer
,
D.
, “
Generalized scale invariance in the atmosphere and fractal models of rain
,”
Water Resour. Res.
21
(
8
),
1233
1250
, doi: (
1985
).
16.
Mandelbrot
,
B. B.
, “
How long is the coast of Britain? Statistical self-similarity and fractional dimension
,”
Science
156
,
636
638
(
1967
).
17.
Meneveau
,
C.
and
Katz
,
J.
, “
Scale-invariance and turbulence models for large-eddy simulation
,”
Annu. Rev. Fluid Mech.
32
,
1
32
(
2000
).
18.
Necas
,
J.
,
Ruzicka
,
M.
, and
Sverak
,
V.
, “
On Leray's self-similar solutions of the Navier-Stokes equations
,”
Acta Math.
176
(
2
),
283
294
(
1996
).
19.
Olver
,
P. J.
,
Applications of Lie Groups to Differential Equations
(
Springer-Verlag
,
New York
,
1986
).
20.
Polyanin
,
A. D.
and
Manzhirov
,
A. V.
,
Handbook of Mathematics for Engineers and Scientists
, 1st ed. (
Chapman & Hall/CRC
,
FL, USA
,
2006
), ISBN: 10 1584885025.
21.
Rieu
,
M.
and
Sposito
,
G.
, “
Fractal fragmentation, soil porosity, and soil water properties, I. Theory
,”
Soil Sci. Soc. Am. J.
55
,
1231
1238
(
1991
).
22.
Rubio
,
M. A.
,
Edwards
,
C. A.
,
Dougherty
,
A.
, and
Gollub
,
J. P.
, “
Self-affine fractal interfaces from immiscible displacement in porous media
,”
Phys. Rev. Lett.
63
(
16
),
1685
1688
(
1989
).
23.
Schertzer
,
D.
,
Tchigirinskaya
,
I.
,
Lovejoy
,
S.
, and
Tuck
,
A.
, “
Quasi-geostrophic turbulence and generalized scale invariance, a theoretical reply
,”
Atmos. Chem. Phys.
12
,
327
336
(
2012
).
24.
Sedov
,
L. I.
,
Similarity and Dimensional Methods in Mechanics
(
Academic Press
,
New York
,
1959
).
25.
Tsai
,
T.-P.
, “
On Leray's self-similar solutions of the Navier-Stokes equations satisfying local energy estimates
,”
Arch. Ration. Mech. Anal.
143
(
1
),
29
51
(
1998
).
26.
Turcotte
,
D. L.
, “
Fractals in geology and geophysics
,”
Pure Appl. Geophys.
131
(
1–2
),
171
196
(
1989
).
27.
Yalin
,
M. S.
,
Theory of Hydraulic Models
(
Macmillan Press
,
London
,
1971
).
You do not currently have access to this content.