Prediction models that capture and use the structure of state-space dynamics can be very effective. In practice, however, one rarely has access to full information about that structure, and accurate reconstruction of the dynamics from scalar time-series data—e.g., via delay-coordinate embedding—can be a real challenge. In this paper, we show that forecast models that employ incomplete reconstructions of the dynamics—i.e., models that are not necessarily true embeddings—can produce surprisingly accurate predictions of the state of a dynamical system. In particular, we demonstrate the effectiveness of a simple near-neighbor forecast technique that works with a two-dimensional time-delay reconstruction of both low- and high-dimensional dynamical systems. Even though correctness of the topology may not be guaranteed for incomplete reconstructions like this, the dynamical structure that they do capture allows for accurate predictions—in many cases, even more accurate than predictions generated using a traditional embedding. This could be very useful in the context of real-time forecasting, where the human effort required to produce a correct delay-coordinate embedding is prohibitive.

1.
E.
Bradley
and
H.
Kantz
, “
Nonlinear time-series analysis revisited
,”
Chaos
25
(
9
),
097610
(
2015
).
2.
U.
Yule
, “
On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers
,”
Philos. Trans. R. Soc. London, Ser. A
226
,
267
298
(
1927
).
3.
Time Series Prediction: Forecasting the Future and Understanding the Past
, edited by
A.
Weigend
and
N.
Gershenfeld
(
Santa Fe Institute Studies in the Sciences of Complexity
,
Santa Fe, NM
,
1993
).
4.
N.
Packard
,
J.
Crutchfield
,
J.
Farmer
, and
R.
Shaw
, “
Geometry from a time series
,”
Phys. Rev. Lett.
45
,
712
(
1980
).
5.
F.
Takens
, “
Detecting strange attractors in fluid turbulence
,” in
Dynamical Systems and Turbulence
, edited by
D.
Rand
and
L.-S.
Young
(
Springer
,
Berlin
,
1981
), p.
366
381
.
6.
T.
Sauer
,
J.
Yorke
, and
M.
Casdagli
, “
Embedology
,”
J. Stat. Phys.
65
,
579
616
(
1991
).
7.
H.
Abarbanel
,
Analysis of Observed Chaotic Data
(
Springer
,
1995
).
8.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
1997
).
9.
Nonlinear Modeling and Forecasting
, edited by
M.
Casdagli
and
S.
Eubank
(
Addison Wesley
,
1992
).
10.
L.
Smith
, “
Identification and prediction of low dimensional dynamics
,”
Physica D: Nonlinear Phenomena
58
(
1–4
),
50
76
(
1992
).
11.
T.
Sauer
, “
Time-series prediction by using delay-coordinate embedding
,” in
Time Series Prediction: Forecasting the Future and Understanding the Past
(
Santa Fe Institute Studies in the Sciences of Complexity
,
Santa Fe, NM
,
1993
).
12.
G.
Sugihara
and
R.
May
, “
Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series
,”
Nature
344
,
734
741
(
1990
).
13.
A.
Pikovsky
, “
Noise filtering in the discrete time dynamical systems
,”
Sov. J. Commun. Technol. Electron.
31
(
5
),
911
914
(
1986
).
14.
E.
Lorenz
, “
Atmospheric predictability as revealed by naturally occurring analogues
,”
J. Atmos Sci.
26
,
636
646
(
1969
).
15.
J.
Garland
and
E.
Bradley
, “
Predicting computer performance dynamics
,” in
Advances in Intelligent Data Analysis X
, Springer Lecture Notes in Computer Science Vol. 7014 (
Springer
,
2011
).
16.
J.
Garland
and
E.
Bradley
, “
On the importance of nonlinear modeling in computer performance prediction
,” in
Advances in Intelligent Data Analysis XII
, Springer Lecture Notes in Computer Science (
Springer
,
2013
).
17.
J.
Garland
,
R.
James
, and
E.
Bradley
, “
Model-free quantification of time-series predictability
,”
Phys. Rev. E
90
,
052910
(
2014
).
18.
M.
Casdagli
,
S.
Eubank
,
J. D.
Farmer
, and
J. F.
Gibson
, “
State space reconstruction in the presence of noise
,”
Phys. D
51
(
1–3
),
52
98
(
1991
).
19.
J.
Gibson
,
J.
Farmer
,
M.
Casdagli
, and
S.
Eubank
, “
An analytic approach to practical state space reconstruction
,”
Phys. D
57
(
1–2
),
1
30
(
1992
).
20.
Th.
Buzug
and
G.
Pfister
, “
Optimal delay time and embedding dimension for delay-time coordinates by analysis of the global static and local dynamical behavior of strange attractors
,”
Phys. Rev. A
45
,
7073
7084
(
1992
).
21.
M.
Rosenstein
,
J.
Collins
, and
C.
De Luca
, “
Reconstruction expansion as a geometry-based framework for choosing proper delay time
,”
Physica D: Nonlinear Phenomena
73
(
1–2
),
82
98
(
1994
).
22.
W.
Liebert
,
K.
Pawelzik
, and
H.
Schuster
, “
Optimal embeddings of chaotic attractors from topological considerations
,”
Europhys. Lett.
14
(
6
),
521
526
(
1991
).
23.
W.
Liebert
and
H.
Schuster
, “
Proper choice of the time delay for the analysis of chaotic time series
,”
Phys. Lett. A
142
(
2–3
),
107
111
(
1989
).
24.
A.
Fraser
and
H.
Swinney
, “
Independent coordinates for strange attractors from mutual information
,”
Phys. Rev. A
33
(
2
),
1134
1140
(
1986
).
25.
L.
Pecora
,
L.
Moniz
,
J.
Nichols
, and
T.
Carroll
, “
A unified approach to attractor reconstruction
,”
Chaos
17
(
1
),
013110
(
2007
).
26.
M.
Kennel
,
R.
Brown
, and
H.
Abarbanel
, “
Determining minimum embedding dimension using a geometrical construction
,”
Phys. Rev. A
45
,
3403
3411
(
1992
).
27.
L.
Cao
, “
Practical method for determining the minimum embedding dimension of a scalar time series
,”
Phys. D
110
(
1–2
),
43
50
(
1997
).
28.
D.
Kugiumtzis
, “
State space reconstruction parameters in the analysis of chaotic time series—The role of the time window length
,”
Phys. D
95
(
1
),
13
28
(
1996
).
29.
R.
Hegger
,
H.
Kantz
, and
T.
Schreiber
, “
Practical implementation of nonlinear time series methods: The TISEAN package
,”
Chaos
9
(
2
),
413
435
(
1999
).
30.
A.
Turing
, “
On computable numbers with an application to the Entscheidungsproblem
,” in
Proceedings of the London Mathematical Society
(
1936
).
31.
C.
Hasson
,
R.
Van Emmerik
,
G.
Caldwell
,
J.
Haddad
,
J.
Gagnon
, and
J.
Hamill
, “
Influence of embedding parameters and noise in center of pressure recurrence quantification analysis
,”
Gait Posture
27
(
3
),
416
422
(
2008
).
32.
J.
Martinerie
,
A.
Albano
,
A.
Mees
, and
P.
Rapp
, “
Mutual information, strange attractors, and the optimal estimation of dimension
,”
Phys. Rev. A
45
,
7058
(
1992
).
33.
Th.
Buzug
and
G.
Pfister
, “
Comparison of algorithms calculating optimal embedding parameters for delay time coordinates
,”
Phys. D
58
(
1–4
),
127
137
(
1992
).
34.
xn should not be chosen as its own neighbor as it has no forward image. In some cases a longer Theiler exclusion may be useful.
35.
P.
Grassberger
,
R.
Hegger
,
H.
Kantz
,
C.
Schaffrath
, and
T.
Schreiber
, “
On noise reduction methods for chaotic data
,”
Chaos
3
,
127
(
1993
).
36.
R.
Hyndman
and
A.
Koehler
, “
Another look at measures of forecast accuracy
,”
Int. J. Forecasting
22
(
4
),
679
688
(
2006
).
37.
E.
Lorenz
, “
Predictability: A problem partly solved
,” in
Predictability of Weather and Climate
, edited by
T.
Palmer
and
R.
Hagedorn
(
Cambridge University Press
,
2006
), pp.
40
58
.
38.
A.
Karimi
and
M.
Paul
, “
Extensive chaos in the Lorenz-96 model
,”
Chaos
20
(
4
),
043105
(
2010
).
39.
J. L.
Kaplan
and
J. A.
Yorke
, “
Chaotic behavior of multidimensional difference equations
,” in
Functional Differential Equations and Approximation of Fixed Points
, volume 730 of Lecture Notes in Mathematics, edited by
H.-O.
Peitgen
and
H.-O.
Walther
(
Springer Berlin Heidelberg
,
1979
), p.
204
227
.
40.
dKYdcap for typical chaotic systems. This suggests that embeddings of the K = 22 and K = 47 time series would require m6 and m38, respectively. The values suggested by the false-near neighbor method for the K = 22 traces are in line with this, but the K = 47 FNN values are far smaller than 2dKY.
41.
Z.
Alexander
,
T.
Mytkowicz
,
A.
Diwan
, and
E.
Bradley
, “
Measurement and dynamical analysis of computer performance data
,” in
Advances in Intelligent Data Analysis IX
, Springer Lecture Notes in Computer Science Vol. 6065 (
Springer
,
2010
).
42.
T.
Myktowicz
,
A.
Diwan
, and
E.
Bradley
, “
Computers are dynamical systems
,”
Chaos
19
(
3
),
033124
(
2009
).
43.
S.
Browne
,
C.
Deane
,
G.
Ho
, and
P.
Mucci
, “
PAPI: A portable interface to hardware performance counters
,” in
Proceedings of Department of Defense HPCMP Users Group Conference
(
1999
).
44.
T.
Mytkowicz
, “
Supporting experiments in computer systems research
,” Ph.D. thesis (
University of Colorado
,
2010
).
45.
J.
Henning
,
SPEC CPU2006 Benchmark Descriptions
(
SIGARCH Computer Architecture News
,
2006
), Vol. 34, Issue 4, pp.
1
17
.
46.
J.
Garland
,
R. G.
James
, and
E.
Bradley
, “
A new method for choosing parameters in delay reconstruction-based forecast strategies
,”
Phys. Rev. E
; preprint arXiv:1509.01740.
47.
L.
Smith
, “
Intrinsic limits on dimension calculations
,”
Phys. Lett. A
133
(
6
),
283
288
(
1988
).
48.
A. A.
Tsonis
,
J. B.
Elsner
, and
K. P.
Georgakakos
, “
Estimating the dimension of weather and climate attractors: Important issues about the procedure and interpretation
,”
J. Atmos. Sci.
50
(
15
),
2549
2555
(
1993
).
You do not currently have access to this content.