In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a “mixing” stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.

1.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kurths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2003
).
2.
D. J. T.
Sumpter
,
Philos. Trans. R. Soc. London, B
361
,
5
(
2006
).
3.
G.
Nicolis
and
I.
Prigogine
,
Self-Organization in Nonequilibrium Systems
(
Wiley
,
New York
,
1977
).
4.
I. R.
Epstein
and
J. A.
Pojman
,
An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos
(
Oxford University Press
,
1998
).
5.
S. C.
Manrubia
,
A. S.
Mikhailov
, and
D. H.
Zanette
,
Emergence of Dynamical Order
(
World Scientific
,
Singapore
,
2004
).
6.
S.
Assenza
,
R.
Gutiérrez
,
J.
Gómez-Gardeñes
,
V.
Latora
, and
S.
Boccaletti
,
Sci. Rep.
1
,
99
(
2011
).
7.
A. M.
Turing
,
Philos. Trans. R. Soc. London
237
,
37
72
(
1952
).
8.
V.
Belykh
,
I.
Belykh
, and
E.
Mosekilde
,
Phys. Rev. E
63
,
036216
(
2001
).
9.
S.
Boccaletti
,
J.
Kurths
,
G.
Osipov
,
D. L.
Valladares
, and
C. S.
Zhou
,
Phys. Rep.
366
,
1
(
2002
).
10.
V. N.
Belykh
,
G. V.
Osipov
,
V. S.
Petrov
,
J. A. K.
Suykens
, and
J.
Vandewalle
,
Chaos
18
,
037106
(
2008
).
11.
L.
Minati
,
Chaos
24
,
043108
(
2014
).
12.
O.
Sporns
,
Networks of the Brain
(
The MIT Press
,
Cambridge, MA, USA
,
2009
).
13.
J.
Cabral
,
M. L.
Kringelbach
, and
G.
Deco
,
Prog. Neurobiol.
114
,
102
(
2014
).
14.
A.
Bergner
,
M.
Frasca
,
G.
Sciuto
,
A.
Buscarino
,
E. J.
Ngamga
,
L.
Fortuna
, and
J.
Kurths
,
Phys. Rev. E
85
,
026208
(
2012
).
15.
L. V.
Gambuzza
,
A.
Cardillo
,
A.
Fiasconaro
,
L.
Fortuna
,
J.
Gómez-Gardeñes
, and
M.
Frasca
,
Chaos
23
,
043103
(
2013
).
16.
V.
Nicosia
,
M.
Valencia
,
M.
Chavez
,
A.
Díaz-Guilera
, and
V.
Latora
,
Phys. Rev. Lett.
110
,
174102
(
2013
).
17.
N.
Punetha
,
S. R.
Ujjwal
,
F. M.
Atay
, and
R.
Ramaswamy
,
Phys. Rev. E
91
,
022922
(
2015
).
18.
E. K. F.
Lee
and
P. G.
Gulak
,
IEEE J. Solid-State Circuits
26
,
1860
(
1991
).
19.
T. S.
Hall
,
C. M.
Twigg
,
J. D.
Gray
,
P.
Hasler
, and
D. V.
Anderson
,
IEEE Trans. Circuits Syst., I
52
,
2298
(
2005
).
20.
E.
Pierzchala
,
G.
Gulak
,
L.
Chua
, and
A.
Rodríguez-Vázquez
,
Field-Programmable Analog Arrays
(
Springer
,
New York
,
2013
).
21.
R.
Caponetto
,
A.
Di Mauro
,
L.
Fortuna
, and
M.
Frasca
,
Int. J. Bifurcation Chaos
15
,
1829
(
2005
).
22.
R.
Kiliç
and
F.
Yildirim Dalkiran
,
Int. J. Bifurcation Chaos
19
,
1339
(
2009
).
23.
R.
Kilic
,
Int. J. Bifurcation Chaos
20
,
419
(
2010
).
24.
A.
Buscarino
,
L.
Fortuna
,
M.
Frasca
, and
G.
Sciuto
,
A Concise Guide to Chaotic Electronic Circuits
(
Springer
,
New York
,
2014
).
25.
See http://www.anadigm.com/_apps/PR021100-0024.pdf for Understanding Anadigm(R) Configurable Analog Modules (CAMs), Anadigm, Inc. (Mesa, AZ, USA) technical documentation.
26.
See http://www.anadigm.com/_doc/DS030100-U006.pdf for AN221E04 Datasheet, Anadigm, Inc. (Mesa, AZ, USA) technical documentation.
27.
Y.
Kuramoto
,
International Symposium on Mathematical Problems in Theoretical Physics
, Lecture Notes in Physics Vol.
39
, edited by
H.
Araki
(
Springer-Verlag
,
New York
,
1975
), p.
420
.
28.
J. A.
Acebrón
,
L. L.
Bonilla
,
C. J.
Pérez Vicente
,
F.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
29.
B.
Boashash
,
IEEE Proc.
80
,
540
(
1992
).
30.
L. M.
Pecora
,
F.
Sorrentino
,
A. M.
Hagerstrom
,
T. E.
Murphy
, and
R.
Roy
,
Nat Commun.
5
,
4079
(
2014
).
31.
X.
Wang
and
E. K.
Blum
,
J. Comput. Syst. Sci.
45
,
1
(
1992
).
32.
M.
Greenwald
,
Comput. Phys. Commun.
164
,
1
(
2004
).
33.
See supplementary material at http://dx.doi.org/10.1063/1.4936791 for additional results, figures, board design materials, and representative experimental time-series.
34.
See http://www.lminati.it/listing/2015/a/ for full set of experimental time-series.
35.
L.
Minati
,
P.
Chiesa
,
D.
Tabarelli
,
L.
D'Incerti
, and
J.
Jovicich
,
Chaos
25
,
033107
(
2015
).
36.
F.
Takens
,
Dynamical Systems and Bifurcations
, Lecture Notes in Mathematics Vol.
1125
(
Springer
,
New York
,
1985
), pp.
99
106
.
37.
M.
Fraser
and
H. L.
Swinney
,
Phys. Rev. A
33
,
1134
(
1986
).
38.
P.
Grassberger
and
I.
Procaccia
,
Physica D
9
,
189
(
1983
).
39.
M. B.
Kennel
,
R.
Brown
, and
H. D. I.
Abarbanel
,
Phys. Rev. A
45
,
3403
(
1992
).
40.
A.
Provenzale
,
L. A.
Smith
,
R.
Vio
, and
G.
Murante
,
Physica D
58
,
31
(
1992
).
41.
D. J.
Watts
and
S. H.
Strogatz
,
Nature
393
,
440
(
1998
).
42.
M. D.
Humphries
and
K.
Gurney
,
PLoS One
3
,
e0002051
(
2008
).
43.
D.
Chicharro
and
R. G.
Andrzejak
,
Phys. Rev. E
80
,
026217
(
2009
).
44.
G.
Niso
,
R.
Bruña
,
E.
Pereda
,
R.
Gutiérrez
,
R.
Bajo
,
F.
Maestú
, and
F.
del-Pozo F
,
Neuroinformatics
11
,
405
(
2013
).
45.
O. E.
Rössler
,
Ann. N. Y. Acad. Sci.
316
,
376
(
1979
).
46.
J.
Theiler
,
S.
Eubank
,
A.
Longtin
,
B.
Galdrikian
, and
J. D.
Farmer
,
Physica D
58
,
77
(
1992
).
47.
R.
Quian Quiroga
,
A.
Kraskov
,
T.
Kreuz
, and
P.
Grassberger
,
Phys. Rev. E
65
,
041903
(
2002
).
48.
A.
Haimovici
,
E.
Tagliazucchi
,
P.
Balenzuela
, and
D. R.
Chialvo
,
Phys. Rev. Lett.
110
,
178101
(
2013
).
49.
A.
Messé
,
D.
Rudrauf
,
H.
Benali
, and
G.
Marrelec
,
PLoS Comput. Biol.
10
,
e1003530
(
2014
).
50.
V.
Vuksanović
and
P.
Hövel
,
NeuroImage
97
,
1
(
2014
).

Supplementary Material

You do not currently have access to this content.