Lempel-Ziv complexity measure has been used to estimate the entropy density of a string. It is defined as the number of factors in a production factorization of a string. In this contribution, we show that its use can be extended, by using the normalized information distance, to study the spatiotemporal evolution of random initial configurations under cellular automata rules. In particular, the transfer information from time consecutive configurations is studied, as well as the sensitivity to perturbed initial conditions. The behavior of the cellular automata rules can be grouped in different classes, but no single grouping captures the whole nature of the involved rules. The analysis carried out is particularly appropriate for studying the computational processing capabilities of cellular automata rules.

1.
J. P.
Crutchfield
, “
Between order and chaos
,”
Nature
8
,
17
24
(
2012
).
2.
J. P.
Crutchfield
, “
Knowledge and meaning: Chaos and complexity
,” in
Modeling Complex Phenomena
, edited by
L.
Lam
and
V.
Narodditsty
(
Springer
,
Berlin
,
1992
), pp.
66
101
.
3.
S.
Wolfram
,
Theory and Applications of Cellular Automata
(
World Scientific Press
,
Singapore
,
1986
).
4.
J.
Kari
, “
Theory of cellular automata: A survey
,”
Theor. Comput. Sci.
334
,
3
33
(
2005
).
5.
S.
Wolfram
, “
Universality and complexity in cellular automata
,”
Physica D
10
,
1
35
(
1984
).
6.
C.
Shalizi
, “
Causal architecture, complexity and self-organization in time series and cellular automata
,” Doctoral dissertation, (
The University of Wisconsin-Madison
,
Madison, WI
, 2001).
7.
W.
Hordijk
,
C.
Shalizi
, and
J. P.
Crutchfield
, “
An upper bound on the products of particle interactions in cellular automata
,”
Physica D
154
,
240
258
(
2001
).
8.
J.-C.
Dubacq
,
B.
Durand
, and
E.
Formenti
, “
Kolmogorov complexity and cellular automata classification
,”
Theor. Comput. Sci.
259
,
271
285
(
2001
).
9.
A. N.
Kolmogorov
, “
Three approaches to the concept of the amount of information
,”
Probl. Inf. Transm. (Engl. Transl.)
1
,
1
7
(
1965
).
10.
M.
Li
and
P.
Vitnyi
,
An Introduction to Kolmogorov Complexity and Its Applications
(
Springer Verlag
,
1993
).
11.
M. A.
Shreshevsky
, “
Lyapunov exponents for one-dimensional cellular automata
,”
J. Non Linear Sci.
2
,
1
8
(
1992
).
12.
F.
Bagnoli
,
R.
Rechtman
, and
S.
Ruffo
, “
Damage spreading and lyapunov exponents in cellular automata
,”
Phys. Lett. A
172
,
34
38
(
1992
).
13.
H.
Zenil
, “
Compression based investigation of the dynamical properties of cellular automata and other systems
,”
Complex Syst.
19
,
1
28
(
1992
).
14.
M.
Li
,
X.
Chen
,
X.
Li
,
B.
Ma
, and
P. M. B.
Vitanyi
, “
The similarity metric
,”
IEEE Trans. Inf. Theory
50
,
3250
3264
(
2004
).
15.
F.
Emmert-Streib
, “
Exploratory analysis of spatiotemporal patterns of cellular automata by clustering compressibility
,”
Phys. Rev. E
81
,
026103
026114
(
2010
).
16.
M. J.
Weinberger
,
A.
Lemepl
, and
J.
Ziv
, “
A sequential algorithm for the universal coding of finite memory sources
,”
IEEE Trans. Inf. Theory
38
,
1002
1014
(
1992
).
17.
A.
Lempel
and
J.
Ziv
, “
On the complexity of finite sequences
,”
IEEE Trans. Inf. Theory
IT-22
,
75
81
(
1976
).
18.
J.
Szczepanski
,
J. M.
Amigo
,
E.
Wajnryb
, and
M. V.
Sanchez-Vives
, “
Characterizing spike trains with Lempel-Ziv complexity
,”
Neurocomputing
58–60
,
77
84
(
2004
).
19.
M.
Aboy
,
R.
Homero
,
D.
Abasolo
, and
D.
Alvarez
, “
Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis
,”
IEEE Trans. Biomed. Eng.
53
,
2282
2288
(
2006
).
20.
Y.
Zhang
,
J.
Hao
,
C.
Zhou
, and
K.
Chang
, “
Normalized Lempel-Ziv complexity and its applications in biosequence analysis
,”
J. Math. Chem.
46
,
1203
1212
(
2009
).
21.
S.
Contantinescu
and
L.
Ilie
,
Mathematical Foundations of Computer Science
(
Springer Verlag
,
Berlin
,
2006
), Vol.
4/62
.
22.
A. B.
Chelani
, “
Complexity analysis of CO concentrations at a traffic site in Delhi
,”
Transp. Res. D
16
,
57
60
(
2011
).
23.
M.
Rajkovic
and
Z.
Mihailovic
, “
Quantifying complexity in the minority game
,”
Physica A
325
,
40
47
(
2003
).
24.
L.
Liu
,
D.
Li
, and
F.
Bai
, “
A relative Lempelziv complexity: Application to comparing biological sequences
,”
Chem. Phys. Lett.
530
,
107
112
(
2012
).
25.
M.
Talebinejad
,
A. D. C.
Chan
, and
A.
Miri
, “
A Lempelziv complexity measure for muscle fatigue estimation
,”
J. Electroencephalogr. Kinesiol.
21
,
236
241
(
2011
).
26.
J.
Ziv
, “
Coding theorems for individual sequences
,”
IEEE Trans. Inf. Theory
IT-
24
,
405
412
(
1978
).
27.
C. S.
Calude
,
Information and Randomness
(
Springer Verlag
,
2002
).
28.
D. P.
Feldman
,
C. S.
McTeque
, and
J. P.
Crutchfield
, “
The organization of intrinsic computation: Complexity-entropy diagrams and the diversity of natural information processing
,”
Chaos
18
,
043106
043121
(
2008
).
29.
S.
Wolfram
,
A New Kind of Science
(
Wolfram media, Inc.
,
Champaign, Illinois
,
2002
).
30.
K.
Culik
and
S.
Yu
, “
Undecidability of CA classification schemes
,”
Complex Syst.
2
,
177
190
(
1988
).
31.
Wolfram alpha knowledge engine.
32.
T. M.
Cover
and
J. A.
Thomas
,
Elements of Information Theory
, 2nd ed. (
Wiley Interscience
,
New Jersey
,
2006
).
33.
J. M.
Amigo
and
M. B.
Kennel
, “
Variance estimators for the Lempel Ziv entropy rate estimator
,”
Chaos
16
,
43102
43108
(
2006
).
34.
A.
Lesne
,
J. L.
Blanc
, and
L.
Pezard
, “
Entropy estimation of very short symbolic sequences
,”
Phys. Rev. E
79
,
046208
046217
(
2009
).
35.
R.
Landauer
, “
Dissipation and heat generation in the computing process
,”
IBM J. Res. Dev.
5
,
183
191
(
1961
).
36.
W. H.
Zurek
, “
Thermodynamic cost of computation, algorithmic complexity and the information metric
,”
Nature
341
,
119
126
(
1989
).
37.
A r range interaction implies a 2r+1 neighborhood.
38.
There are different Lempel-Ziv scheme for factorization,32 and the reader must be careful to recognize which scheme is used in each case.
39.
The random configurations were taken from random.org site which draws random number from atmospheric noise from different geographic locations.
40.
The significant test subdivides the data into successively more clusters looking for the first minimum of the silhouette statistic. The gap significant test was also used with no change in the clustering result. The gap test compares the dispersion of clusters derived from the data to that generated from a sample of null hypothesis sets. The actual implementation was done by using Wolfram Mathematica(c) FindCluster internal function.
41.
Steps were normalized by the total spatial length of the sequences in order to show the abscissa of the plot independent the system size, actual steps follow by multiplying by the sequence length.
You do not currently have access to this content.