In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

1.
S. H.
Strogatz
,
Nonlinear Dynamics and Chaos
(
Persus Books Publishing
,
LLC
,
1994
).
2.
O.
Decroly
and
A.
Goldbeter
,
Proc. Natl. Acad. Sci. U.S.A.
79
,
6917
(
1982
).
3.
C.
Suguna
,
K. K.
Chowdhury
, and
S.
Sinha
,
Phys. Rev. E
60
,
5943
(
1999
).
4.
J. C.
Leloup
and
A.
Goldbeter
,
J. Theor. Biol.
198
,
445
(
1999
).
5.
A.
Goldbeter
,
D.
Gonze
,
G.
Houart
,
J. C.
Leloup
, and
J.
Halloy
,
Chaos
11
,
247
(
2001
).
6.
V.
Sevim
and
P. A.
Rikvold
,
J. Theor. Biol.
253
,
323
(
2008
).
7.
Z.
Zhang
,
W.
Ye
,
Y.
Qian
,
Z.
Zheng
,
X.
Huang
, and
G.
Hu
,
PLoS ONE
7
(
7
),
e39355
(
2012
).
9.
C.
Furusawa
and
K.
Kaneko
,
J. Theor. Biol.
209
,
395
(
2001
).
10.
C.
Furusawa
and
K.
Kaneko
,
Biol. Direct
4
,
17
(
2009
).
11.
12.
E. M.
Posades
,
S. R.
Criley
, and
D. S.
Coffey
,
Cancer Res.
56
,
3682
(
1996
).
13.
R.
Sedivy
and
R. M.
Mader
,
Cancer Invest.
15
,
601
(
1997
).
14.
E. H.
Davidson
,
D. R.
McClay
, and
L.
Hood
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
1475
(
2003
).
15.
Principles of Developmental Genetics
, edited by
S. A.
Moody
(
Academic Press
,
2007
).
16.
T.
Nakahata
,
A. J.
Gross
, and
M.
Ogawa
,
J. Cell. Physiol.
113
,
455
(
1982
).
17.
U.
Alon
,
An Introduction to Systems Biology: Design Principles of Biological Circuits
(
Chapman & Hall/CRC
,
2007
).
18.
J. E.
Ferrell
, Jr.
,
Curr. Biol.
22
,
R458
(
2012
).
19.
T.
Miyamoto
,
C.
Furusawa
, and
K.
Kaneko
,
PLoS Comput. Biol.
11
(
8
),
e1004476
(
2015
).
20.
S.
Mangan
and
U.
Alon
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
11980
(
2003
).
21.
Y.
Setty
,
A.
Mayo
,
M.
Surette
, and
U.
Alon
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
7702
(
2003
).
22.
P.
Grassberger
and
I.
Procaccia
,
Physica D
9
(
1–2
),
189
(
1983
).
23.
S.
Huang
,
Y. P.
Guo
,
G.
May
, and
T.
Enver
,
Develop. Biol.
305
,
695
(
2007
).
25.
M.
Villani
,
A.
Barbieri
, and
R.
Serra
,
PLoS ONE
6
(
3
),
e17703
(
2011
).
26.
G.
von Dassow
,
E.
Meir
,
E. M.
Munro
, and
G. M.
Odell
,
Nature
406
,
188
(
2000
).
27.
A.
Machina
,
R.
Edwards
, and
P.
van den Driessche
,
SIAM J. Appl. Dyn. Syst.
12
(
1
),
95
(
2013
).
28.
A.
Machina
,
R.
Edwards
, and
P.
Driessche
,
Chaos
23
,
025101
(
2013
).
You do not currently have access to this content.