Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories—episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L − 1, where L is the number of modalities.

1.
B. C.
Dickerson
and
H.
Eichenbaum
, “
The episodic memory system: Neurocircuitry and disorders
,”
Neuropsychopharmacology
35
,
86
104
(
2010
).
2.
V. A.
Diwadkar
,
P. A.
Carpenter
, and
M. A.
Just
, “
Collaborative activity between parietal and dorso-lateral prefrontal cortex in dynamic spatial working memory revealed by fMRI
,”
Neuroimage
12
,
85
99
(
2000
).
3.
K.
Nashiro
and
M.
Mather
, “
The effect of emotional arousal on memory binding in normal aging and Alzheimer's disease
,”
Am. J. Psychol.
124
,
301
312
(
2011
).
4.
M.
Rabinovich
,
A.
Volkovskii
,
P.
Lecanda
,
R.
Huerta
,
H.
Abarbanel
, and
G.
Laurent
, “
Dynamical encoding by networks of competing neuron groups: Winnerless competition
,”
Phys. Rev. Lett.
87
,
068102
(
2001
).
5.
M. I.
Rabinovich
,
R.
Huerta
,
P.
Varona
, and
V. S.
Afraimovich
, “
Transient cognitive dynamics, metastability, and decision making
,”
PLoS Comput. Biol.
4
,
e1000072
(
2008
).
6.
M. I.
Rabinovich
,
K. J.
Friston
, and
P.
Varona
,
Principles of Brain Dynamics: Global State Interactions
(
MIT Press
,
2012
).
7.
C.
Bick
and
M. I.
Rabinovich
, “
Dynamical origin of the effective storage capacity in the brain's working memory
,”
Phys. Rev. Lett.
103
,
218101
(
2009
).
8.
K.
Friston
,
C.
Frith
, and
R.
Frackowiak
, “
Principal component analysis learning algorithms: A neurobiological analysis
,”
Proc. R. Soc. London, Ser. B
254
,
47
54
(
1993
).
9.
J.
Kelso
,
A.
Fuchs
,
R.
Lancaster
,
T.
Holroyd
,
D.
Cheyne
, and
H.
Weinberg
, “
Dynamic cortical activity in the human brain reveals motor equivalence
,”
Nature
392
,
814
818
(
1998
).
10.
A.
McIntosh
,
F.
Bookstein
,
J. V.
Haxby
, and
C.
Grady
, “
Spatial pattern analysis of functional brain images using partial least squares
,”
Neuroimage
3
,
143
157
(
1996
).
11.
A. J.
Bell
and
T. J.
Sejnowski
, “
An information-maximization approach to blind separation and blind deconvolution
,”
Neural Comput.
7
,
1129
1159
(
1995
).
12.
S.
Makeig
,
T. P.
Jung
,
A. J.
Bell
,
D.
Ghahremani
, and
T. J.
Sejnowski
, “
Blind separation of auditory event-related brain responses into independent components
,”
Proc. Natl. Acad. Sci.
94
,
10979
10984
(
1997
).
13.
A.
Banerjee
,
A. S.
Pillai
, and
B.
Horwitz
, “
Using large-scale neural models to interpret connectivity measures of cortico-cortical dynamics at millisecond temporal resolution
,”
Front. Syst. Neurosci.
5
,
102
(
2011
).
14.
M. I.
Rabinovich
,
V. S.
Afraimovich
, and
P.
Varona
, “
Heteroclinic binding
,”
Dyn. Syst.
25
,
433
442
(
2010
).
15.
M. I.
Rabinovich
,
A. N.
Simmons
, and
P.
Varona
, “
Dynamical bridge between brain and mind
,”
Trends Cognit. Sci.
19
,
453
461
(
2015
).
16.
V.
Afraimovich
and
S.
Hsu
,
Lectures on Chaotic Dynamical Systems
(
American Mathematical Society Providence
,
2003
).
17.
A.
Bystritsky
,
A.
Nierenberg
,
J.
Feusner
, and
M.
Rabinovich
, “
Computational non-linear dynamical psychiatry: A new methodological paradigm for diagnosis and course of illness
,”
J. Psychiatr. Res.
46
,
428
435
(
2012
).
18.
G.
Schiepek
,
I.
Tominschek
,
S.
Heinzel
,
M.
Aigner
,
M.
Dold
,
A.
Unger
,
G.
Lenz
,
C.
Windischberger
,
E.
Moser
,
M.
Plöderl
 et al, “
Discontinuous patterns of brain activation in the psychotherapy process of obsessive compulsive disorder: Converging results from repeated FMRI and daily self-reports
,”
PloS One
8
,
e71863
(
2013
).
19.
A. M.
Hayes
,
C.
Yasinski
,
J. B.
Barnes
, and
C. L.
Bockting
, “
Network destabilization and transition in depression: New methods for studying the dynamics of therapeutic change
,”
Clin. Psychol. Rev.
(
2015
).
20.
R. A.
Stevenson
,
M.
Segers
,
S.
Ferber
,
M. D.
Barense
, and
M. T.
Wallace
, “
The impact of multisensory integration deficits on speech perception in children with autism spectrum disorders
,”
Front. Psychol.
5
,
379
(
2014
).
21.
M. T.
Wallace
and
R. A.
Stevenson
, “
The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities
,”
Neuropsychologia
64
,
105
123
(
2014
).
22.
A. R.
Powers
,
A. R.
Hillock
, and
M. T.
Wallace
, “
Perceptual training narrows the temporal window of multisensory binding
,”
J. Neurosci.
29
,
12265
12274
(
2009
).
23.
M.
Quak
,
R. E.
London
, and
D.
Talsma
, “
A multisensory perspective of working memory
,”
Front. Human Neurosci.
9
,
197
(
2015
).
24.
D.
Talsma
, “
Predictive coding and multisensory integration: An attentional account of the multisensory mind
,”
Front. Integr. Neurosci.
9
,
19
(
2015
).
25.
R. M.
May
and
W. J.
Leonard
, “
Nonlinear aspects of competition between three species
,”
SIAM J. Appl. Math.
29
,
243
253
(
1975
).
26.
D. F.
Toupo
and
S. H.
Strogatz
, “
Nonlinear dynamics of the rock-paper-scissors game with mutations
,”
Phys. Rev. E
91
,
052907
(
2015
).
27.
M. E.
Gilpin
, “
Limit cycles in competition communities
,”
Am. Nat.
109
,
51
60
(
1975
).
28.
J.
Hofbauer
and
J.-H.
So
, “
Multiple limit cycles for three dimensional Lotka-Volterra equations
,”
Appl. Math. Lett.
7
,
65
70
(
1994
).
29.
M.
Rabinovich
,
I.
Tristan
, and
P.
Varona
, “
Neural dynamics of attentional cross-modality control
,”
PLoS ONE
8
,
e64406
(
2013
).
30.
L.
Glass
and
J. S.
Pasternack
, “
Prediction of limit cycles in mathematical models of biological oscillations
,”
Bull. Math. Biol.
40
,
27
44
(
1978
).
31.
J.
Vano
,
J.
Wildenberg
,
M.
Anderson
,
J.
Noel
, and
J.
Sprott
, “
Chaos in low-dimensional Lotka-Volterra models of competition
,”
Nonlinearity
19
,
2391
(
2006
).
32.
V.
Afraimovich
,
G.
Moses
, and
T.
Young
, “
Two dimensional heteroclinic attractor in the generalized Lotka-Volterra system
,” Nonlinearity (submitted), arXiv:1509.04570 [math.DS]; available at http://arxiv.org/abs/1509.04570.
33.
M. I.
Rabinovich
,
Y.
Sokolov
, and
R.
Kozma
, “
Robust sequential working memory recall in heterogeneous cognitive networks
,”
Front. Syst. Neurosci.
8
,
220
(
2014
).
34.
M. I.
Rabinovich
,
P.
Varona
,
A. I.
Selverston
, and
H. D.
Abarbanel
, “
Dynamical principles in neuroscience
,”
Rev. Mod. Phys.
78
,
1213
(
2006
).
35.
O.
Kolodny
and
S.
Edelman
, “
The problem of multimodal concurrent serial order in behavior
,”
Neuroscience & Biobehavioral Reviews
56
,
252
265
(
2015
).
You do not currently have access to this content.