Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain.

1.
A.
Celani
,
M.
Cencini
,
A.
Mazzino
, and
M.
Vergassola
, “
Active and passive fields face to face
,”
New J. Phys.
6
,
72
(
2004
).
2.
M.
Sommer
and
S.
Reich
, “
Phase-space volume conservation under space and time discretization schemes for the shallow-water equations
,”
Mon. Weather Rev.
138
,
4229
4236
(
2010
).
3.
F.
Noé
,
C.
Schütte
,
E.
Vanden-Eijnden
,
L.
Reich
, and
T. R.
Weikl
, “
Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
19011
19016
(
2009
).
4.
J. T.
Kayija
, “
The rendering equation
,” in
Proceedings of the 13th annual conference on Computer graphics and interactive techniques (SIGGRAPH'86)
(
1986
), p.
143
.
5.
M.
Vorländer
, “
Simulation of the transient and steady-state sound propagation in rooms using a new combined ray-tracing/image-source algorithm
,”
J. Acoust. Soc. Am.
86
,
172
178
(
1989
).
6.
V.
Červený
,
Seismic Ray Theory
(
Cambridge University Press
,
Cambridge, UK
,
2001
).
7.
R. J.
LeVeque
, “
Lectures in mathematics: ETH Zürich
,” in
Numerical Methods for Conservation Laws
(
Birkhäuser
,
Basel, Switzerland
,
1992
).
8.
P.
Cvitanović
,
R.
Artuso
,
R.
Mainieri
,
G.
Tanner
, and
G.
Vattay
,
Chaos: Classical and Quantum
(
Niels Bohr Institute
,
Copenhagen, Denmark
,
2012
).
9.
J.
Ding
and
A.
Zhou
, “
Finite approximations of Frobenius-Perron operators: A solution of Ulam's conjecture to multi-dimensional transformations
,”
Physica D
92
,
61
68
(
1996
).
10.
O.
Junge
and
P.
Koltai
, “
Discretization of the Frobenius-Perron operator using a sparse Haar tensor basis-the Sparse Ulam method
,”
SIAM J. Numer. Anal.
47
,
3464
3485
(
2009
).
11.
G.
Froyland
,
O.
Junge
, and
P.
Koltai
, “
Estimating long term behavior of flows without trajectory integration: the infinitesimal generator approach
,”
SIAM J. Numer. Anal.
51
(
1
),
223
247
(
2013
).
12.
M.
Budisić
,
R.
Mohr
, and
I.
Mezić
, “
Applied Koopmanism
,”
Chaos
22
,
047510
(
2012
).
13.
D.
Lippolis
and
P.
Cvitanović
, “
How well can one resolve the state space of a chaotic map?,”
Phys. Rev. Lett.
104
,
014101
(
2010
).
14.
C. J.
Bose
and
R.
Murray
, “
The exact rate of approximation in Ulam's method
,”
Discrete Continuous Dyn. Syst.
7
,
219
235
(
2001
).
15.
M.
Blank
,
G.
Keller
, and
C.
Liverani
, “
Ruelle-Perron-Frobenius spectrum for Anosov maps
,”
Nonlinearity
15
,
1905
1973
(
2002
).
16.
A. Le
Bot
, “
Energy exchange in uncorrelated ray fields of vibroacoustics
,”
J. Acoust. Soc. Am.
120
(
3
),
1194
1208
(
2006
).
17.
G.
Tanner
, “
Dynamical energy analysis-Determining wave energy distributions in vibro-acoustical structures in the high-frequency regime
,”
J. Sound Vib.
320
,
1023
1038
(
2009
).
18.
G.
Tanner
,
D. J.
Chappell
,
D.
Löchel
, and
N.
Søndergaard
, “
Discrete flow mapping: A mesh based simulation tool for mid-to-high frequency vibro-acoustic excitation of complex automotive structures
,”
SAE Int. J. Passenger Cars Mech. Syst.
7
(
3
),
1198
1204
(
2014
).
19.
D. J.
Chappell
,
S.
Giani
, and
G.
Tanner
, “
Dynamical energy analysis for built-up acoustic systems at high frequencies
,”
J. Acoust. Soc. Am.
130
(
3
),
1420
1429
(
2011
).
20.
D. J.
Chappell
,
G.
Tanner
, and
S.
Giani
, “
Boundary element dynamical energy analysis: A versatile high-frequency method suitable for two or three dimensional problems
,”
J. Comput. Phys.
231
,
6181
6191
(
2012
).
21.
D. J.
Chappell
and
G.
Tanner
, “
Solving the Liouville equation via a boundary element method
,”
J. Comput. Phys.
234
,
487
498
(
2013
).
22.
D. J.
Chappell
,
G.
Tanner
,
D.
Löchel
, and
N.
Søndergaard
, “
Discrete flow mapping: Transport of ray densities on triangulated surfaces
,”
Proc. R. Soc. A
469
,
20130153
(
2013
).
23.
D. J.
Chappell
,
D.
Löchel
,
N.
Søndergaard
, and
G.
Tanner
, “
Dynamical energy analysis on mesh grids: a new tool for describing the vibro-acoustic response of engineering structures
,”
Wave Motion
51
(
4
),
589
597
(
2014
).
24.
P.
Cvitanović
,
C. P.
Dettmann
,
R.
Mainieri
, and
G.
Vattay
, “
Trace formulas for stochastic evolution operators: Weak noise perturbation theory
,”
J. Stat. Phys.
93
,
981
999
(
1998
).
25.
P.
Cvitanović
,
C. P.
Dettmann
,
R.
Mainieri
, and
G.
Vattay
, “
Trace formulas for stochastic evolution operators: Smooth conjugation method
,”
Nonlinearity
12
,
939
953
(
1999
).
26.
P.
Cvitanović
,
N.
Søndergaard
,
G.
Palla
,
G.
Vattay
, and
C. P.
Dettmann
, “
Spectrum of stochastic evolution operators: Local matrix representation approach
,”
Phys. Rev. E
60
,
3936
3941
(
1999
).
27.
G.
Palla
,
G.
Vattay
,
A.
Voros
,
N.
Søndergaard
, and
C. P.
Dettmann
, “
Noise corrections to stochastic trace formulas
,”
Found. Phys.
31
,
641
657
(
2001
).
28.
A. Le
Bot
, “
A vibroacoustic model for high frequency analysis
,”
J. Sound Vib.
211
,
537
554
(
1998
).
29.
Ya. G.
Sinai
, “
What is a billiard?,”
Not. Am. Math. Soc.
51
,
412
413
(
2004
), see http://www.ams.org/notices/200404/index.html.
30.
R. H.
Lyon
, “
Statistical analysis of power injection and response in structures and rooms
,”
J. Acoust. Soc. Am.
45
,
545
565
(
1969
).
31.
R. H.
Lyon
and
R. G.
DeJong
,
Theory and Application of Statistical Energy Analysis
, 2nd ed. (
Butterworth-Heinemann
,
Boston, USA
,
1995
).
32.
S.
Hemmady
,
T. M.
Antonsen
, Jr.
,
E.
Ott
, and
S. M.
Anlage
, “
Statistical prediction and measurement of induced voltages on components within complicated enclosures: A wave-chaotic approach
,”
IEEE Trans. Electromagn. Compat.
54
(
4
),
758
771
(
2012
).
33.
G.
Gradoni
,
J.-H.
Yeh
,
B.
Xiao
,
T. M.
Antonsen
,
S. M.
Anlage
, and
E.
Ott
, “
Predicting the statistics of wave transport through chaotic cavities by the random coupling model: A review and recent progress
,”
Wave Motion
51
(
4
),
606
621
(
2014
).
34.
R. S.
Langley
, “
A wave intensity technique for the analysis of high frequency vibrations
,”
J. Sound Vib.
159
,
483
502
(
1992
).
35.
R. S.
Langley
and
A. N.
Bercin
, “
Wave intensity analysis for high frequency vibrations
,”
Philos. Trans. R. Soc. London, Ser. A
346
,
489
499
(
1994
).
36.
A. Le
Bot
, “
Energy transfer for high frequencies in built-up structures
,”
J. Sound Vib.
250
,
247
275
(
2002
).
37.
D. J.
Chappell
and
G.
Tanner
, “
Estimating the validity of statistical energy analysis using dynamical energy analysis: a preliminary study
,” in
Integral Methods in Science and Engineering
, edited by
C.
Constanda
and
P. J.
Harris
(
Birkhäuser
,
Boston
,
2011
), pp.
69
78
.
38.
O.
Georgiou
,
C. P
Dettmann
, and
E. G.
Altmann
, “
Faster than expected escape for a class of fully chaotic maps
,”
Chaos
22
,
043115
(
2012
).
39.
E. G.
Altmann
,
J. S. E.
Portela
, and
T.
Tél
, “
Leaking chaotic systems
,”
Rev. Mod. Phys.
85
,
869
918
(
2013
).
40.
G. M.
Zaslavsky
, “
Chaos, fractional kinetics, and anomalous transport
,”
Phys. Rep.
371
(
6
),
461
580
(
2002
).
You do not currently have access to this content.