In this paper, given a time series generated by a certain dynamical system, we construct a new class of scale-free networks with fractal structure based on the subshift of finite type and base graphs. To simplify our model, we suppose the base graphs are bipartite graphs and the subshift has the special form. When embedding our growing network into the plane, we find its image is a graph-directed self-affine fractal, whose Hausdorff dimension is related to the power law exponent of cumulative degree distribution. It is known that a large spectral gap in terms of normalized Laplacian is usually associated with small mixing time, which makes facilitated synchronization and rapid convergence possible. Through an elaborate analysis of our network, we can estimate its Cheeger constant, which controls the spectral gap by Cheeger inequality. As a result of this estimation, when the bipartite base graph is complete, we give a sharp condition to ensure that our networks are well-connected with rapid mixing property.

1.
L. A.
Adamic
,
R. M.
Lukose
,
A. R.
Puniyani
, and
B. A.
Huberman
, “
Search in power-law networks
,”
Phys. Rev. E
64
(
4
),
046135
(
2001
).
2.
R.
Alberich
,
J.
Miro-Julia
, and
F.
Rosselló
, “
Marvel Universe looks almost like a real social network
,” preprint arXiv cond-mat/0202174 (
2002
).
3.
R.
Albert
,
H.
Jeong
, and
A.-L.
Barabási
, “
Internet: Diameter of the world-wide web
,”
Nature
401
(
6749
),
130
131
(
1999
).
4.
J.
Alafate
,
B.
Wu
, and
Z. Z.
Zhang
, “
Eigenvalues of normalized Laplacian matrices of fractal trees and dendrimers: Analytical results and applications
,”
J. Chem. Phys.
138
(
20
),
204116
(
2013
).
5.
N.
Alon
, “
Eigenvalues and expanders
,”
Combinatorica
6
(
2
),
83
96
(
1986
).
6.
A.-L.
Barabási
,
R.
Erzsebet
, and
V.
Tamas
, “
Deterministic scale-free networks
,”
Physica A
299
(
3
),
559
564
(
2001
).
7.
B.
Bollobás
,
Random Graphs
(
Springer
,
New York
,
1998
).
8.
L. A.
Bunimovich
,
I. P.
Cornfeld
,
R. L.
Dobrushin
,
M. V.
Jakobson
,
N. B.
Maslova
,
Y. B.
Pesin
,
Y. G.
Sinai
,
Y. M.
Sukhov
, and
A. M.
Vershik
,
Dynamical Systems. II. Ergodic Theory with Applications to Dynamical Systems and Statistical Mechanics
, Encyclopedia of Mathematical Sciences Vol. 2, edited and with a preface by Sinai (Translated from the Russian) (
Springer-Verlag
,
Berlin
,
1989
).
9.
R.
Bowen
,
Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
, Lecture Notes in Mathematics Vol. 470 (
Springer-Verlag
,
Berlin-New York
,
1975
).
10.
J.
Cheeger
, “
A lower bound for the smallest eigenvalue of the Laplacian
,” in
Problems in Analysis
, edited by
R. C.
Gunning
(
Princeton University Press
,
1970
), pp.
195
199
.
11.
F.
Chung
,
Spectral Graph Theory
(
AMS Publications
,
1997
).
12.
F.
Chung
,
Y.
Lin
, and
S.-T.
Yau
, “
Harnack inequalities for graphs with non-negative Ricci curvature
,”
J. Math. Anal. Appl.
415
,
25
32
(
2014
).
13.
F.
Chung
and
L.
Lu
,
Complex Graphs and Networks
(
AMS Publications
,
2006
).
14.
J.
Dodziuk
and
W. S.
Kendall
, “
Combinatorial Laplacians and isoperimetric inequality
,” in
From Local Times to Global Geometry, Control and Physics
(
1986
), Vol. 150, pp.
68
74
.
15.
H.
Ebel
,
L. I.
Mielsch
, and
S.
Bornholdt
, “
Scale-free topology of e-mail networks
,”
Phys. Rev. E
66
(
3
),
035103
(
2002
).
16.
K. J.
Falconer
,
Techniques in Fractal Geometry
(
John Wiley & Sons, Ltd.
,
1997
).
17.
F. R.
Gantmacher
,
Applications of the Theory of Matrices
(
Courier Dover Publications
,
2005
).
18.
A.
Grigoryan
,
Analysis on Graphs
, Lecture Notes (
University Bielefeld
,
2009
).
19.
M.
Jerrum
and
A.
Sinclair
, “
Conductance and the rapid mixing property for Markov chains: The approximation of permanent resolved
,” in
Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing
(
1988
), pp.
235
244
.
20.
R.
Kenyon
and
Y.
Peres
, “
Hausdorff dimensions of sofic affine-invariant sets
,”
Isr. J. Math.
94
(
1
),
157
178
(
1996
).
21.
J.
Komjáhy
and
K.
Simon
, “
Generating hierarchical scale-free graphs from fractals
,”
Chaos, Solitons Fractals
44
(
8
),
651
666
(
2011
).
22.
L.
Lovász
, “
Random walks on graphs: A survey
,”
Combinatorics: Paul Erdős is Eighty
(
1993
), Vol. 2, Issue 1, pp.
1
46
.
23.
A.
Mohaisen
,
A.
Yun
, and
Y.
Kim
, “
Measuring the mixing time of social graphs
,” in
Proceedings of the 10th ACM SIGCOMM Conference on Internet Measurement
(
2010
), pp.
383
389
.
24.
S.
Mahadevan
, “
Samuel meets Amarel: Automating value function approximation using global state space analysis
,” in
Proceedings of AAAI
(
2005
), Vol. 5, pp.
1000
1005
.
25.
M. E.
Newman
, “
Scientific collaboration networks. I. Network construction and fundamental results
,”
Phys. Rev. E
64
(
1
),
016131
(
2001
).
26.
G.
Pandurangan
and
A.
Trehan
, “
Xheal: Localized self-healing using expanders
,” in
Proceedings of the 30th annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
(
2011
), pp.
301
310
.
27.
H.
Qiu
and
E. R.
Hancock
, “
Clustering and embedding using commute times
,”
IEEE Trans. Pattern Anal. Mach. Intell.
29
(
11
),
1873
1890
(
2007
).
28.
Y. G.
Sinai
, “
Markov partitions and C-diffeomorphisms
,”
Functional Analysis and its Applications
2
(
1
),
61
82
(
1968
).
29.
Y. G.
Sinai
, “
Construction of Markov partitionings
,”
Funkcional. Anal. i Priložen.
2
(
3
),
70
80
(
1968
) (in Russian).
30.
F.
Takens
, “
Detecting strange attractors in turbulence
,” in
Dynamical Systems and Turbulence
(
Springer-Verlag
,
Berlin/Heidelberg
,
1981
), pp.
366
381
.
31.
V.
Tejedor
,
O.
Bénichou
, and
R.
Voituriez
, “
Global mean first-passage times of random walks on complex networks
,”
Phys. Rev. E
80
(
6
),
065104
(
2009
).
32.
P.
Tetali
, “
Random walks and effective resistance of networks
,”
J. Theor. Probab.
4
,
101
109
(
1991
).
33.
B.
Weiss
, “
Subshifts of finite type and sofic systems
,”
Monatsh. Math.
77
(
5
),
462
474
(
1973
).
34.
Z. Y.
Wen
,
Mathematical Foundations of Fractal Geometry
(
Shanghai Scientific and Technological Education Publishing House
,
2000
).
You do not currently have access to this content.