It has been numerically seen that noise introduces stable well-defined oscillatory state in a system with unstable limit cycles resulting from subcritical Poincaré–Andronov–Hopf (or simply Hopf) bifurcation. This phenomenon is analogous to the well known stochastic resonance in the sense that it effectively converts noise into useful energy. Herein, we clearly explain how noise induced imperfection in the bifurcation is a generic reason for such a phenomenon to occur and provide explicit analytical calculations in order to explain the typical square-root dependence of the oscillations' amplitude on the noise level below a certain threshold value. Also, we argue that the noise can bring forth oscillations in average sense even in the absence of a limit cycle. Thus, we bring forward the inherent general mechanism of the noise induced Hopf bifurcation naturally realisable across disciplines.

1.
F.
Sagués
,
J. M.
Sancho
, and
J.
García-Ojalvo
,
Rev. Mod. Phys.
79
,
829
(
2007
).
3.
R.
Benzi
,
A.
Sutera
, and
A.
Vulpiani
,
J. Phys. A
14
,
L453
(
1981
).
4.
L.
Gammaitoni
,
P.
Hanggi
,
P.
Jung
, and
F.
Marchesoni
,
Rev. Mod. Phys.
70
,
223
(
1998
).
5.
C. Van den
Broeck
,
J. M. R.
Parrondo
, and
R.
Toral
,
Phys. Rev. Lett.
73
,
3395
(
1994
).
6.
C. Van den
Broeck
,
J. M. R.
Parrondo
,
J.
Armero
, and
A.
Hernández-Machado
,
Phys. Rev. E
49
,
2639
(
1994
).
7.
G.
Grinstein
,
M. A.
Muñoz
, and
Y.
Tu
,
Phys. Rev. Lett.
76
,
4376
(
1996
).
8.
W.
Horsthemke
and
R.
Lefever
,
Noise-Induced Transitions
(
Springer
,
2006
).
9.
J.
Buceta
,
M.
Ibañes
,
J. M.
Sancho
, and
K.
Lindenberg
,
Phys. Rev. E
67
,
021113
(
2003
).
10.
M. C.
Cross
and
P. C.
Hohenberg
,
Rev. Mod. Phys.
65
,
851
(
1993
).
11.
F.
Julicher
,
A.
Ajdari
, and
J.
Prost
,
Rev. Mod. Phys.
69
,
1269
(
1997
).
12.
P.
Hänggi
and
F.
Marchesoni
,
Rev. Mod. Phys.
81
,
387
(
2009
).
13.
R. L.
Kautz
,
J. Appl. Phys.
58
,
424
(
1985
).
14.
L.
Billings
,
I. B.
Schwartz
,
M.
McCrary
,
A. N.
Korotkov
, and
M. I.
Dykman
,
Phys. Rev. Lett.
104
,
140601
(
2010
).
15.
L. S.
Borkowski
,
Phys. Rev. E
83
,
051901
(
2011
).
16.
Y.
Li
,
R.
Liu
, and
M.
Hou
,
Phys. Rev. Lett.
109
,
198001
(
2012
).
17.
G.
Agez
,
M. G.
Clerc
,
E.
Louvergneaux
, and
R. G.
Rojas
,
Phys. Rev. E
87
,
042919
(
2013
).
18.
J. B.
Gao
,
W.-w.
Tung
, and
N.
Rao
,
Phys. Rev. Lett.
89
,
254101
(
2002
).
19.
N. G.
Stocks
,
N. D.
Stein
,
S. M.
Soskin
, and
P. V. E.
McClintock
,
J. Phys. A: Math. Gen.
25
,
L1119
(
1992
).
20.
S. M.
Soskin
,
R.
Mannella
, and
P. V. E.
McClintock
,
Phys. Rep.
373
,
247
(
2003
).
21.
A.
Juel
,
A. G.
Darbyshire
, and
T.
Mullin
,
Proc. R. Soc. London, Ser. A
453
,
2627
(
1997
).
22.
T.
Xiao
,
J.
Ma
,
Z.
Hou
, and
H.
Xin
,
New J. Phys.
9
,
403
(
2007
).
23.
S.
Aumaître
 et al,
J. Stat. Mech.
2007
,
P07016
(
2007
).
24.
A.
Zippelius
and
M.
Lücke
,
J. Stat. Phys.
24
,
345
(
1981
).
25.
J.
Teramae
,
H.
Nakao
, and
G. B.
Ermentrout
,
Phys. Rev. Lett.
102
,
194102
(
2009
).
26.
K.
Takashi
,
Scholarpedia
2
(
1
),
2202
(
2007
).
29.
R.
Lefever
and
J. Wm.
Turner
,
Phys. Rev. Lett
56
,
1631
(
1986
).
30.
J. K.
Bhattacharjee
and
S.
Bhattacharyya
,
Nonlinear Dynamics
(
Hindustan Book Agency
,
New Delhi
,
2007
), Chap. 4.
31.
A.
Daffertshofer
,
Phys. Rev. E
58
,
327
(
1998
).
32.
Y.
Xu
,
R.
Gu
,
H.
Zhang
,
W.
Xu
, and
J.
Duan
,
Phys. Rev. E
83
,
056215
(
2011
).
33.
M.
Gaudreault
,
F.
Drolet
, and
J.
Viñals
,
Phys. Rev. E
85
,
056214
(
2012
).
34.

One can verify this statement by looking at the effect of noise on the following system: ẋ=y+ax(x2+y21);ẏ=+x+by(x2+y21). This system can have a stable node surrounded by an unstable limit cycle depending on the values of a and b. A well-defined oscillatory state in the presence of noise, and hence NIHB, cannot be found.

You do not currently have access to this content.