Diabetes mellitus (DM) is one of the world's most prevalent medical conditions. Contemporary management focuses on lowering mean blood glucose values toward a normal range, but largely ignores the dynamics of glucose fluctuations. We probed analyte time series obtained from continuous glucose monitor (CGM) sensors. We show that the fluctuations in CGM values sampled every 5 min are not uncorrelated noise. Next, using multiscale entropy analysis, we quantified the complexity of the temporal structure of the CGM time series from a group of elderly subjects with type 2 DM and age-matched controls. We further probed the structure of these CGM time series using detrended fluctuation analysis. Our findings indicate that the dynamics of glucose fluctuations from control subjects are more complex than those of subjects with type 2 DM over time scales ranging from about 5 min to 5 h. These findings support consideration of a new framework, dynamical glucometry, to guide mechanistic research and to help assess and compare therapeutic interventions, which should enhance complexity of glucose fluctuations and not just lower mean and variance of blood glucose levels.

1.
American Diabetes Association
,
Diabetes Care
37
(Suppl.
1
),
S81
(
2014
).
2.
American Diabetes Association
,
Diabetes Care
37
(Suppl.
1
),
S14
(
2014
).
3.
H.
Ogata
,
K.
Tokuyama
,
S.
Nagasaka
,
A.
Ando
,
I.
Kusaka
,
N.
Sato
,
A.
Goto
,
S.
Ishibashi
,
K.
Kiyono
,
Z. R.
Struzik
 et al,
Am. J. Physiol. Regul. Integr. Comp. Physiol.
291
,
R1638
(
2006
).
4.
H.
Ogata
,
K.
Tokuyama
,
S.
Nagasaka
,
A.
Ando
,
I.
Kusaka
,
N.
Sato
,
A.
Goto
,
S.
Ishibashi
,
K.
Kiyono
,
Z. R.
Struzik
 et al,
Methods Inform. Med.
46
,
222
(
2007
).
5.
N.
Yamamoto
,
Y.
Kubo
,
K.
Ishizawa
,
G.
Kim
,
T.
Moriya
,
T.
Yamanouchi
, and
K.
Otsuka
,
Diabetes Technol. Ther.
12
,
775
(
2010
).
6.
H.
Ogata
,
K.
Tokuyama
,
S.
Nagasaka
,
T.
Tsuchita
,
I.
Kusaka
,
S.
Ishibashi
,
H.
Suzuki
,
N.
Yamada
,
K.
Hamano
,
K.
Kiyono
 et al,
Metabolism
61
,
1041
(
2012
).
7.
M.
Costa
,
A. L.
Goldberger
, and
C.-K.
Peng
,
Phys. Rev. Lett.
89
,
068102
(
2002
).
8.
J.
Theiler
,
S.
Eubank
,
A.
Longtin
,
B.
Galdrikian
, and
J. D.
Farmer
,
Physica D
58
,
77
(
1992
).
9.
J. S.
Richman
and
J. R.
Moorman
,
Am. J. Physiol. Heart Circ. Physiol.
278
,
H2039
(
2000
).
10.
M.
Costa
,
I.
Ghiran
,
C.-K.
Peng
,
A.
Nicholson-Weller
, and
A. L.
Goldberger
,
Phys. Rev. E
78
,
20901
(
2008
).
11.
L. C.
Cancio
,
A. I.
Batchinsky
,
W. L.
Baker
,
C.
Necsoiu
,
J.
Salinas
,
A. L.
Goldberger
, and
M. D.
Costa
,
J. Crit. Care
28
,
1093
(
2013
).
12.
M. D.
Costa
,
W. T.
Schnettler
,
C.
Amorim-Costa
,
J.
Bernardes
,
A.
Costa
,
A. L.
Goldberger
, and
D. A. de
Campos
,
Early Hum. Dev.
90
,
67
(
2014
).
13.
C.-K.
Peng
,
S.
Havlin
,
H. E.
Stanley
, and
A. L.
Goldberger
,
Chaos
5
,
82
(
1995
).
14.
P.
Wessa
, Linear regression graphical model validation (v1.0.7) in free statistics software (v1.1.23-r7). Office for Research Development and Education (
2012
), see http://www.wessa.net/rwasp_linear_regression.wasp/.
15.
K.
Hu
,
P. C.
Ivanov
,
Z.
Chen
,
P.
Carpena
, and
H. E.
Stanley
,
Phys. Rev. E
64
,
011114
(
2001
).
16.
M.
Costa
,
A. L.
Goldberger
, and
C.-K.
Peng
,
Phys. Rev. E
71
,
021906
(
2005
).
17.
G. E.
Anderson
,
Y.
Kologlu
, and
C.
Papadopoulos
,
Metabolism
16
,
586
(
1967
).
18.
A.
Iberall
,
M.
Ehrenberg
,
S.
Cardon
, and
M.
Simenhoff
,
Metabolism
17
,
1119
(
1968
).
19.
J.
Churruca
,
L.
Vigil
,
E.
Luna
,
J.
Ruiz-Galiana
, and
M.
Varela
,
Diabetes Metab. Syndr. Obes.
1
,
3
(
2008
).
20.
R.
Brunner
,
G.
Adelsmayr
,
H.
Herkner
,
C.
Madl
, and
U.
Holzinger
,
Crit Care
16
,
R175
(
2012
).
21.
M.
Signal
,
F.
Thomas
,
G. M.
Shaw
, and
J. G.
Chase
,
J. Diabetes Sci. Technol.
7
,
1492
(
2013
).
22.
R. T. M.
van Hooijdonk
,
A.
Abu-Hanna
, and
M. J.
Schultz
,
Crit Care
16
,
178
(
2012
).
You do not currently have access to this content.