This article proposes an approach to identify fractional-order systems with sparse interaction structures and high dimensions when observation data are supposed to be experimentally available. This approach includes two steps: first, it is to estimate the value of the fractional order by taking into account the solution properties of fractional-order systems; second, it is to identify the interaction coefficients among the system variables by employing the compressed sensing technique. An error analysis is provided analytically for this approach and a further improved approach is also proposed. Moreover, the applicability of the proposed approach is fully illustrated by two examples: one is to estimate the mutual interactions in a complex dynamical network described by fractional-order systems, and the other is to identify a high fractional-order and homogeneous sequential differential equation, which is frequently used to describe viscoelastic phenomena. All the results demonstrate the feasibility of figuring out the system mechanisms behind the data experimentally observed in physical or biological systems with viscoelastic evolution characters.

1.
Y. A.
Rossikhin
and
M. V.
Shitikova
,
Appl. Mech. Rev.
50
,
15
(
1997
).
2.
R.
Hilfer
,
Applications of Fractional Calculus in Physics
(
Word Scientific
,
Singapore
,
2000
).
3.
A. M.
Keightley
,
J. C.
Myland
,
K. B.
Oldham
, and
P. G.
Symons
,
J. Electroanal. Chem.
322
,
25
(
1992
).
4.
J.
Kang
,
B.
Xu
,
Y.
Yao
,
W.
Lin
,
C.
Hennessy
,
P.
Fraser
, and
J.
Feng
,
PLoS Comput. Biol.
7
,
e1002094
(
2011
).
5.
A.
Oustaloup
and
P.
Coiffet
,
Systmes Asservis Linaires D’ordre Fractionnaire: Thorie et Pratique
(
Masson
,
Paris
,
1983
).
6.
I.
Podlubny
,
Fractional Differential Equations
(
Academic Press
,
San Diego
,
2005
).
8.
R.
Albert
and
A. L.
Barabási
,
Rev. Mod. Phys.
74
,
47
(
2002
).
9.
Z.
Yuan
,
C.
Zhao
,
Z.
Di
,
W.-X.
Wang
, and
Y.-C.
Lai
,
Nature Commun.
4
,
2447
(
2013
).
10.
Y.-Y.
Liu
and
J.-J.
Slotine
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
2460
(
2013
).
11.
W.
Lin
and
H.
Ma
,
Phys. Rev. E
75
,
066212
(
2007
).
12.
H.
Ma
,
B.
Xu
,
W.
Lin
, and
J.
Feng
,
Phys. Rev. E
82
,
066210
(
2010
).
13.
F.
Sorrentino
,
Phys. Rev. E
81
,
066218
(
2010
).
14.
H.
Ma
,
W.
Lin
, and
Y.-C.
Lai
,
Phys. Rev. E
87
,
050901
R
(
2013
).
15.
H.
Ma
and
W.
Lin
,
SIAM J. Control Optim.
51
,
3692
(
2013
).
16.
R.
Autariello
,
R.
Dzakpasu
, and
F.
Sorrentino
,
Phys. Rev. E
87
,
012915
(
2013
).
17.
B. M.
Vinagre
,
I.
Podlubny
,
A.
Hernandez
, and
V.
Feliu
,
Fract. Calculus Appl. Anal.
3
,
231
(
2000
); available at http://www.math.bas.bg/complan/fcaa/volume3/n3/jpodl-1.pdf.
18.
A.
Oustaloup
,
La Dérivation Non Entière: Théorie, Synthèse et Applications
(
Hermes
,
Paris
,
1995
).
19.
T.
Chen
,
IET Control Theor. Applications
5
,
900
(
2011
).
20.
W.
Krajewski
and
U.
Viaro
, in
Proceeding of the International Conference on Methods of Models Automation and Robotics
(
2011
), p.
132
.
21.
S. S.
Chen
,
D. L.
Donoho
, and
M. A.
Saunders
,
SIAM Rev. J. Sci. Comput.
20
,
33
(
1998
).
22.
E. J.
Candes
and
T.
Tao
,
IEEE Trans. Inform. Theor.
51
,
4203
(
2005
).
23.
E. J.
Candes
,
J. K.
Romberg
, and
T.
Tao
,
IEEE Trans. Inform. Theor.
52
,
489
(
2006
).
24.
E. J.
Candes
,
J. K.
Romberg
, and
T.
Tao
,
Commun. Pure Appl. Math.
59
,
1207
(
2006
).
25.
W.-X.
Wang
,
R.
Yang
,
Y.-C.
Lai
,
V.
Kovanis
, and
C.
Grebogi
,
Phys. Rev. Lett.
106
,
154101
(
2011
).
26.
S. G.
Samko
,
A. A.
Kilbas
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives: Theory and Applications
(
Gordon and Breach Science Publishers
,
Amsterdam
,
1993
).
27.
M.
Caputo
and
F.
Mainardi
,
Riv. Nuovo Cimento
1
,
161
(
1971
).
28.
N.
Heymans
and
I.
Podlubny
,
Rheol. Acta
45
,
765
(
2006
).
29.
The K-restricted isometry constant δK is defined to be the smallest quantity such that MT obeys (1δK)c2MTc2(1+δK)c2 for all subsets TJ of cardinality at most K, and all real coefficients (cj)jT. Here, the integer K satisfies 1 ≤ K ≤ Card(J), MT is the submatrix obtained by extracting the columns of M corresponding to the indices in T, and M is the matrix with the finite collection of vectors (vj)jJRd as columns.
30.
K.
Diethelm
and
A. D.
Freed
, in
Proceeding of Forschung und wissenschaftliches Rechnen: Beiträge zum Heinz-Billing-Preis
(
1998
), vol.
1999
, p.
57
.
31.
K.
Diethelm
,
N. J.
Ford
, and
A. D.
Freed
,
Nonlinear Dyn.
29
,
3
(
2002
).
32.
Y.
Kobayashi
,
A.
Onishi
,
T.
Hoshi
,
K.
Kawamura
, and
M. G.
Fujie
, in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
2007
), p.
1801
.
You do not currently have access to this content.