Square Turing patterns are usually unstable in reaction-diffusion systems and are rarely observed in corresponding experiments and simulations. We report here an example of spontaneous formation of square Turing patterns with the Lengyel-Epstein model of two coupled layers. The squares are found to be a result of the resonance between two supercritical Turing modes with an appropriate ratio. Besides, the spatiotemporal resonance of Turing modes resembles to the mode-locking phenomenon. Analysis of the general amplitude equations for square patterns reveals that the fixed point corresponding to square Turing patterns is stationary when the parameters adopt appropriate values.

1.
A. M.
Turing
,
Philos. Trans. R. Soc. London, Ser. B
237
,
37
(
1952
).
2.
Q.
Ouyang
and
H. L.
Swinney
,
Nature (London)
352
,
610
(
1991
).
3.
P.
Borckmans
,
G.
Dewel
,
A.
De Wit
, and
D.
Walgraef
, in
Chemical Waves and Patterns
, edited by
R.
Kapral
and
K.
Showalter
(
Kluwer
,
Dordrecht
,
1995
), p.
323
.
4.
A.
Kudrolli
and
J. P.
Gollub
,
Physica D
97
,
133
(
1996
).
5.
P. B.
Umbrahowar
,
F.
Melo
, and
H. L.
Swinney
,
Physica (Amsterdam)
249A
,
1
(
1998
).
6.
P.
Le Gal
,
A.
Pocheau
, and
V.
Croquette
,
Phys. Rev. Lett.
54
,
2501
(
1985
).
7.
P.
Le Gal
and
V.
Croquette
,
Phys. Fluids
31
,
3440
(
1998
).
8.
M. F.
Schatz
,
S. J.
VanHook
,
W. D.
McCormick
,
J. B.
Swift
, and
H. L.
Swinney
,
Phys. Fluids
11
,
2577
(
1999
).
9.
M. R.
Roussel
and
J. C.
Wang
,
J. Chem. Phys.
120
,
8079
(
2004
).
10.
G. H.
Gunaratne
,
Q.
Ouyang
, and
H. L.
Swinney
,
Phys. Rev. E
50
,
2802
(
1994
).
11.
C. X.
Zhou
,
H. Y.
Guo
, and
Q.
Ouyang
,
Phys. Rev. E
65
,
036118
(
2002
).
12.
M.
Bachir
,
S.
Metens
,
P.
Borckmans
, and
G.
Dewel
,
Europhys. Lett.
54
,
612
(
2001
).
13.
L. F.
Yang
,
M.
Dolnik
,
A. M.
Zhabotinsky
, and
I. R.
Epstein
,
Phys. Rev. Lett.
88
,
208303
(
2002
).
14.
L. F.
Yang
and
I. R.
Epstein
,
Phys. Rev. Lett.
90
,
178303
(
2003
).
15.
L. F.
Yang
,
A. M.
Zhabotinsky
, and
I. R.
Epstein
,
Phys. Rev. Lett.
92
,
198303
(
2004
).
16.
I.
Berenstein
,
L. F.
Yang
,
M.
Dolnik
,
A. M.
Zhabotinsky
, and
I. R.
Epstein
,
Phys. Rev. Lett.
91
,
058302
(
2003
).
17.
I.
Lengyel
and
I. R.
Epstein
,
Science
251
,
650
(
1991
).
18.
X. J.
Yuan
,
X.
Shao
,
H. M.
Liao
, and
Q.
Ouyang
,
Chin. Phys. Lett.
26
,
024702
(
2009
).
19.
L. F.
Yang
,
M.
Dolnik
,
A. M.
Zhabotinsky
, and
I. R.
Epstein
,
Chaos
16
,
037114
(
2006
).
20.
A.
Pikovsky
,
M.
Rosenblum
, and
J.
Kürths
,
Synchronization: A Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
2001
).
21.
S.
Coombes
and
P. C.
Bressloff
,
Phys. Rev. E
60
,
2086
(
1999
).
22.
T.
Frisch
and
G.
Sonnino
,
Phys. Rev. E
51
,
1169
(
1995
).
You do not currently have access to this content.