We present an efficient control scheme that stabilizes the unstable periodic orbits of a chaotic system. The resulting orbits are known as cupolets and collectively provide an important skeleton for the dynamical system. Cupolets exhibit the interesting property that a given sequence of controls will uniquely identify a cupolet, regardless of the system's initial state. This makes it possible to transition between cupolets, and thus unstable periodic orbits, simply by switching control sequences. We demonstrate that although these transitions require minimal controls, they may also involve significant chaotic transients unless carefully controlled. As a result, we present an effective technique that relies on Dijkstra's shortest path algorithm from algebraic graph theory to minimize the transients and also to induce certainty into the control of nonlinear systems, effectively providing an efficient algorithm for the steering and targeting of chaotic systems.

1.
E.
Ott
,
C.
Grebogi
, and
J. A.
Yorke
, “
Controlling chaos
,”
Phys. Rev. Lett.
64
(
11
),
1196
1199
(
1990
).
2.
S.
Hayes
,
C.
Grebogi
, and
E.
Ott
, “
Communicating with chaos
,”
Phys. Rev. Lett.
70
(
20
),
3031
(
1993
).
3.
S.
Hayes
,
C.
Grebogi
,
E.
Ott
, and
A.
Mark
, “
Experimental control of chaos for communication
,”
Phys. Rev. Lett.
73
(
13
),
1781
1784
(
1994
).
4.
D.
Viswanath
, “
Symbolic dynamics and periodic orbits of the Lorenz attractor
,”
Nonlinearity
16
(
3
),
1035
(
2003
).
5.
C.
Grebogi
,
S. M.
Hammel
,
J. A.
Yorke
, and
T.
Sauer
, “
Shadowing of physical trajectories in chaotic dynamics: Containment and refinement
,”
Phys. Rev. Lett.
65
(
13
),
1527
1530
(
1990
).
6.
B. A.
Coomes
,
H.
Koçak
, and
K. J.
Palmer
, “
Shadowing orbits of ordinary differential equations
,”
J. Comput. Appl. Math.
52
(
1
),
35
43
(
1994
).
7.
B. A.
Coomes
,
H.
Koçak
, and
K. J.
Palmer
, “
Long periodic shadowing
,”
Numer. Algorithms
14
(
1
),
55
78
(
1997
).
8.
K. M.
Short
,
R. A.
Garcia
,
M.
Daniels
,
J.
Curley
, and
M.
Glover
, “
An introduction to the KOZ scalable audio compression technology
,” in
AES 118th Convention Paper, Barcelona
(
2005
).
9.
K. M.
Short
,
R. A.
Garcia
, and
M.
Daniels
, “
Scalability in KOZ audio compression technology
,” in
AES 119th Convention Paper, New York, NY
(
2005
).
10.
T.
Shinbrot
,
E.
Ott
,
C.
Grebogi
, and
J. A.
Yorke
, “
Using chaos to direct trajectories to targets
,”
Phys. Rev. Lett.
65
(
26
),
3215
(
1990
).
11.
E. M.
Bollt
 et al, “
Optimal targeting of chaos
,”
Phys. Lett. A
245
(
5
),
399
406
(
1998
).
12.
C. G.
Schroer
and
E.
Ott
, “
Targeting in Hamiltonian systems that have mixed regular/chaotic phase spaces
,”
Chaos
7
(
4
),
512
519
(
1997
).
13.
W. L.
Ditto
,
S. N.
Rauseo
, and
M. L.
Spano
, “
Experimental control of chaos
,”
Phys. Rev. Lett.
65
(
26
),
3211
(
1990
).
14.
E.
Barreto
,
E. J.
Kostelich
,
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Efficient switching between controlled unstable periodic orbits in higher dimensional chaotic systems
,”
Phys. Rev. E
51
,
4169
4172
(
1995
).
15.
J.
Starrett
and
R.
Tagg
, “
Control of a chaotic parametrically driven pendulum
,”
Phys. Rev. Lett.
74
(
11
),
1974
(
1995
).
16.
A. T.
Parker
, “
Topics in chaotic secure communication
,” Ph.D. thesis (
University of New Hampshire
,
1999
).
17.
K.
Zarringhalam
, “
CUPOLETS: Chaotic unstable periodic orbits theory and applications
,” Ph.D. thesis (
University of New Hampshire
,
2007
).
18.
K.
Zarringhalam
and
K. M.
Short
, “
Generating an adaptive multiresolution image analysis with compact cupolets
,”
Nonlinear Dyn.
52
,
51
70
(
2008
).
19.
F. M.
Carrano
and
J. J.
Prichard
,
Data Abstraction and Problem Solving with C++: Walls and Mirrors
, 3 ed. (
Addison-Wesley
,
2002
).
20.
M. L.
Fredman
and
R. E.
Tarjan
, “
Fibonacci heaps and their uses in improved network optimization algorithms
,”
J. ACM (JACM)
34
(
3
),
596
615
(
1987
).
21.
K. M.
Short
and
A. T.
Parker
, “
Security issues in chaotic communications
,”
Paper presented at the SIAM Conference on Dynamical Systems
,
Snowbird, UT
, May 23–27 (
1999
).
22.
T.
Matsumoto
,
L.
Chua
, and
M.
Komuro
, “
The double scroll
,”
IEEE Trans. Circuits Syst.
32
(
8
),
797
818
(
1985
).
23.
K. T.
Hansen
, “
Alternative method to find orbits in chaotic systems
,”
Phys. Rev. E
52
(
3
),
2388
(
1995
).
24.
B.-L.
Hao
and
W.-M.
Zheng
,
Applied Symbolic Dynamics and Chaos
(
World Scientific
,
Singapore
,
1998
).
25.
Z.-B.
Wu
and
J.-Y.
Zeng
, “
A method to find unstable periodic orbits for the diamagnetic Kepler problem
,”
Phys. Scr.
61
(
4
),
406
(
2000
).
26.
E. G.
Johnson
, “
Controlled transitions between orbits in nonlinear systems
,” Master's thesis (
University of New Hampshire, NH, USA
,
2009
).
27.
T. T.
von Rosenvinge
,
J. C.
Brandt
, and
R. W.
Farquhar
, “
The international cometary explorer mission to comet Giacobini-Zinner
,”
Science
232
(
4748
),
353
356
(
1986
).
28.
E. M.
Bollt
and
J. D.
Meiss
, “
Targeting chaotic orbits to the moon through recurrence
,”
Phys. Lett. A
204
(
5
),
373
378
(
1995
).
29.
W. S.
Koon
,
M. W.
Lo
,
J. E.
Marsden
, and
S. D.
Ross
, “
Low energy transfer to the moon
,”
Celestial Mech. Dyn. Astron.
81
(
1–2
),
63
73
(
2001
).
30.
E.
Belbruno
,
Capture Dynamics and Chaotic Motions in Celestial Mechanics: With Applications to the Construction of Low Energy Transfers
(
Princeton University Press
,
2004
).
31.
E. E. N.
Macau
and
C.
Grebogi
, “
Control of chaos and its relevancy to spacecraft steering
,”
Philos. Trans. R. Soc. A
364
(
1846
),
2463
2481
(
2006
).
32.
K. E.
Davis
,
R. L.
Anderson
,
D. J.
Scheeres
, and
G. H.
Born
, “
Optimal transfers between unstable periodic orbits using invariant manifolds
,”
Celestial Mech. Dyn. Astron.
109
(
3
),
241
264
(
2011
).
33.
P. R.
Griesemer
,
C.
Ocampo
, and
D. S.
Cooley
, “
Targeting ballistic lunar capture trajectories using periodic orbits
,”
J. Guidance, Control, Dyn.
34
(
3
),
893
902
(
2011
).
You do not currently have access to this content.