This article concerns the phenomenon of Mixed-Mode Bursting Oscillations (MMBOs). These are solutions of fast-slow systems of ordinary differential equations that exhibit both small-amplitude oscillations (SAOs) and bursts consisting of one or multiple large-amplitude oscillations (LAOs). The name MMBO is given in analogy to Mixed-Mode Oscillations, which consist of alternating SAOs and LAOs, without the LAOs being organized into burst events. In this article, we show how MMBOs are created naturally in systems that have a spike-adding bifurcation or spike-adding mechanism, and in which the dynamics of one (or more) of the slow variables causes the system to pass slowly through that bifurcation. Canards are central to the dynamics of MMBOs, and their role in shaping the MMBOs is two-fold: saddle-type canards are involved in the spike-adding mechanism of the underlying burster and permit one to understand the number of LAOs in each burst event, and folded-node canards arise due to the slow passage effect and control the number of SAOs. The analysis is carried out for a prototypical fourth-order system of this type, which consists of the third-order Hindmarsh-Rose system, known to have the spike-adding mechanism, and in which one of the key bifurcation parameters also varies slowly. We also include a discussion of the MMBO phenomenon for the Morris-Lecar-Terman system. Finally, we discuss the role of the MMBOs to a biological modeling of secreting neurons.

1.
E.
Benoît
,
J.-L.
Callot
,
F.
Diener
, and
M.
Diener
, “
Chasse au canard
,”
Collect. Math.
32
,
37
119
(
1981
).
2.
R.
Bertram
,
J.
Rhoads
, and
W. P.
Cimbora
, “
A phantom bursting mechanism for episodic bursting
,”
Bull. Math. Biol.
70
(
7
),
1979
1993
(
2008
).
3.
M.
Brøns
, “
Bifurcations and instabilities in the Greitzer model for compressor system surge
,”
Math. Eng. Ind.
2
(
1
),
51
63
(
1988
).
4.
M.
Brøns
,
M.
Krupa
, and
M.
Wechselberger
, “
Mixed-mode oscillations due to the generalized canard mechanism
,”
Fields Inst. Commun.
49
,
39
63
(
2006
).
5.
F.
Clément
and
J.-P.
Françoise
, “
Mathematical modeling of the GnRH pulse and surge generator
,”
SIAM J. Appl. Dyn. Syst.
6
(
2
),
441
456
(
2007
).
6.
M.
Desroches
,
B.
Krauskopf
, and
H. M.
Osinga
, “
The geometry of slow manifolds near a folded node
,”
SIAM J. Appl. Dyn. Syst.
7
(
4
),
1131
1162
(
2008
).
7.
M.
Desroches
,
J.
Guckenheimer
,
B.
Krauskopf
,
C.
Kuehn
,
H. M.
Osinga
and
M.
Wechselberger
, “
Mixed-mode oscillations with multiple time scales
,”
SIAM Rev.
54
(
2
),
211
288
(
2012
).
8.
E. J.
Doedel
,
R. C.
Paffenroth
,
A. R.
Champneys
,
T. F.
Fairgrieve
,
Y. A.
Kuznetsov
,
B. E.
Oldeman
, and
X. J.
Wang
, AUTO-07P: Continuation and bifurcation software for ordinary differential equations,
2007
, available for download from http://indy.cs.concordia.ca/auto.
9.
F.
Dumortier
and
R.
Roussarie
, “
Canard cycles and center manifolds
,”
Mem. Am. Math. Soc.
121
(
577
) (
1996
, published online).
10.
W.
Eckhaus
, “
Relaxation oscillations including a standard chase on French ducks
,” in
Asymptotic Analysis II—Surveys and New Trends
, Lecture Notes in Mathematics, Vol. 985, edited by
F.
Verhulst
(
Springer
,
1983
), pp.
449
494
.
11.
M.
Golubitsky
,
K.
Josic
, and
T. J.
Kaper
, “
An unfolding theory approach to bursting in fast-slow systems
,”
in Global Analysis of Dynamical Systems: Festschrift Dedicated to Floris Takens on the Occasion of his 60th Birthday
,
H. W.
Broer
,
B.
Krauskopf
, and
G.
Vegter
(
Institute of Physics Publication
,
2001
), pp.
277
308
.
12.
J.
Guckenheimer
and
C.
Kuehn
, “
Computing slow manifolds of saddle type
,”
SIAM J. Appl. Dyn. Syst.
8
(
3
),
854
879
(
2009
).
13.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model of the nerve impulse using two first-order differential equations
,”
Nature
296
,
162
164
(
1982
).
14.
J. L.
Hindmarsh
and
R. M.
Rose
, “
A model of neuronal bursting using three coupled first order differential equations
,”
Proc. R. Soc., London, Ser. B
221
(
1222
),
87
102
(
1984
).
15.
J.
Jalics
,
M.
Krupa
, and
H. G.
Rotstein
, “
Mixed-mode oscillations in a three time-scale system of ODEs motivated by a neuronal model
,”
Dyn. Syst.
25
(
4
),
445
482
(
2010
).
16.
E. M.
Izhikevich
, “
Neural excitability, spiking and bursting
,”
Int. J. Bifurcation Chaos
10
(
6
),
1171
1266
(
2000
).
17.
T. J.
Kaper
and
C. K. R. T.
Jones
, “
A primer on the exchange lemma for fast-slow systems
,” in
Multiple-Time-Scale Dynamical Systems
(
Springer
,
New York
,
2001
), pp.
65
87
.
18.
M.
Krupa
and
P.
Szmolyan
, “
Relaxation oscillation and canard explosion
,”
J. Differ. Equations
174
(
2
),
312
368
(
2001
).
19.
M.
Krupa
and
P.
Szmolyan
, “
Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions
,”
SIAM J. Math. Anal.
33
(
1
),
286
314
(
2001
).
20.
M.
Krupa
,
N.
Popović
,
N.
Kopell
, and
H. G.
Rotstein
, “
Mixed- mode oscillations in a three time-scale model for the dopaminergic neurons
,”
Chaos
18
(
1
),
015106
(
2008
).
21.
S. S.
Kumar
and
P. S.
Buckmaster
, “
Hyperexcitability, interneurons, and loss of GABAergic synapses in entorhinal cortex in a model of temporal lobe epilepsy
,”
J. neurosci.
26
(
17
),
4613
4623
(
2006
).
22.
A.
Milik
,
P.
Szmolyan
,
H.
Loeffelmann
, and
E.
Groeller
, “
Geometry of mixed-mode oscillations in the 3D autocatalator
,”
Int. J. Bifurcation Chaos
8
,
505
519
(
1998
).
23.
T. I.
Netoff
,
R.
Clewley
,
S.
Arno
,
T.
Keck
, and
J. A.
White
, “
Epilepsy in small-world networks
,”
J. Neurosci.
24
(
37
),
8075
8083
(
2004
).
24.
J.
Nowacki
,
H. M.
Osinga
, and
K.
Tsaneva-Atanasova
, “
Dynamical systems analysis of spike-adding mechanisms in transient bursts
,”
J. Math. Neurosci.
2
,
7
(
2012
).
25.
H. M.
Osinga
and
K.
Tsaneva-Atanasova
, “
Dynamics of plateau bursting depending on the location of its equilibrium
,”
J. Neuroendocrinol.
22
(
12
),
1301
1314
(
2010
).
26.
B.
Percha
,
R.
Dzakpasu
,
M.
Żochowski
, and
J.
Parent
, “
Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy
,”
Phys. Rev. E
72
(
3
),
031909
(
2005
).
27.
J.
Rinzel
, “
A formal classification of bursting mechanisms in excitable systems
,” in
Proceedings of the International Congress of Mathematicians
(
1986
), Vol. 1, pp.
1578
1593
.
28.
T.
Kispersky
,
J. A.
White
, and
H. G.
Rotstein
, “
The mechanism of abrupt transition between theta and hyper-excitable spiking activity in medial entorhinal cortex layer II stellate cells
,”
PloS one
5
(
11
),
e13697
(
2010
).
29.
J. E.
Rubin
and
D.
Terman
, “
Geometric singular perturbation analysis of neuronal dynamics
,” in
Handbook of Dynamical Systems
(
Elsevier
,
2002
), Vol. 2, pp.
93
146
.
30.
A.
Shilnikov
and
M.
Kolomiets
, “
Methods of the qualitative theory for the Hindmarsh-Rose model: A case study - A tutorial
,”
Int. J. Bifurcation Chaos
18
(
08
),
2141
2168
(
2008
).
31.
P.
Szmolyan
and
M.
Wechselberger
, “
Canards in 3
,”
J. Differ. Equations
177
(
2
),
419
453
(
2001
).
32.
F.
Takens
, “
Constrained equations: a study of implicit differential equations and their discontinuous solutions
,” in
Structural Stability, the Theory of Catastrophes, and Applications in the Sciences
, Lecture Notes in Mathematics, Vol. 525 (
Springer
,
1976
), pp.
143
234
.
33.
D.
Terman
, “
Chaotic spikes arising from a model of bursting in excitable membranes
,”
SIAM J. Appl. Math.
51
(
5
),
1418
1450
(
1991
).
34.
K.
Tsaneva-Atanasova
,
H. M.
Osinga
,
T.
Rieß
, and
A.
Sherman
, “
Full system bifurcation analysis of endocrine bursting models
,”
J. Theor. Biol.
264
(
4
),
1133
1146
(
2010
).
35.
These attracting branches stretch to infinity (while remaining strongly normally hyperbolic). This means that a typical technique of proving the existence of an invariant manifold (e.g., graph transform) can be applied without modifying the original vector field, by using test functions that stretch out to infinity. The slow manifolds obtained in this manner are analytic.
You do not currently have access to this content.