We studied the pressure patterns used by domestic canaries in the production of birdsong. Acoustically different sound elements (“syllables”) were generated by qualitatively different pressure gestures. We found that some ubiquitous transitions between syllables can be interpreted as bifurcations of a low dimensional dynamical system. We interpreted these results as evidence supporting a model in which different timescales interact nonlinearly.

1.
H.
Zeigler
and
P.
Marler
,
Neuroscience of Birdsong
(
Cambridge University Press
,
2008
).
2.
G. B.
Mindlin
and
R.
Laje
,
The Physics of Birdsong
(
Springer
,
New York
,
2005
).
3.
M. S.
Fee
,
A. A.
Kozhevnikov
, and
R. H.
Hahnloser
, “
Neural mechanisms of vocal sequence generation in the songbird
,”
Ann. N.Y. Acad. Sci.
1016
,
153
170
(
2004
).
4.
M. A.
Long
and
M. S.
Fee
, “
Using temperature to analyse temporal dynamics in the songbird motor pathway
,”
Nature
456
,
189
194
(
2008
).
5.
J.
Méndez
,
G.
Mindlin
, and
F.
Goller
, “
Interaction between telencephalic signals and respiratory dynamics in songbirds
,”
J. Neurophysiol.
107
,
2971
2983
(
2012
).
6.
M. A.
Goldin
,
L. M.
Alonso
,
J. A.
Alliende
,
F.
Goller
, and
G. B.
Mindlin
, “
Temperature induced syllable breaking unveils nonlinearly interacting timescales in birdsong motor pathway
,”
PLoS ONE
8
(
6
),
e67814
(
2013
).
7.
M.
Schmidt
,
J.
McLean
, and
F.
Goller
, “
Breathing and vocal control: The respiratory system as both a driver and target of telencephalic vocal motor circuits in songbirds
,”
Exp Physiol.
97
,
455
461
(
2012
).
8.
R. C.
Ashmore
,
J. A.
Renk
, and
M. F.
Schmidt
, “
Bottom-up activation of the vocal motor forebrain by the respiratory brainstem
,”
J. Neurosci.
28
(
10
),
2613
2623
(
2008
).
9.
R. H. R.
Hahnloser
,
A. A.
Kozhevnikov
, and
M. S.
Fee
, “
An ultra-sparse code underlies the generation of neural sequences in a songbird
,”
Nature
419
,
65
70
(
2002
).
10.
M. A.
Trevisan
,
G. B.
Mindlin
, and
F.
Goller
, “
Nonlinear model predicts diverse respiratory patterns of birdsong
,”
Phys. Rev. Lett.
96
,
058103
(
2006
).
11.
J. A.
Alliende
,
J. M.
Méndez
,
F.
Goller
, and
G. B.
Mindlin
, “
Hormonal acceleration of song development illuminates motor control mechanism in canaries
,”
J. Dev. Neurobiol.
70
,
943
960
(
2010
).
12.
L. M.
Alonso
,
J. A.
Alliende
,
F.
Goller
, and
G. B.
Mindlin
, “
Low-dimensional dynamical model for the diversity of pressure patterns used in canary song
,”
Phys. Rev. E
79
,
041929
(
2009
).
13.
L. M.
Alonso
,
J. A.
Alliende
, and
G. B.
Mindlin
, “
Dynamical origin of complex motor patterns
,”
Eur. Phys. J. D
60
,
361
367
(
2010
).
14.
F.
Goller
and
R. A.
Suthers
, “
Role of syringeal muscles in controlling the phonology of bird song
,”
J. Neurophysiol.
76
,
287
300
(
1996
).
15.
F.
Goller
and
R. A.
Suthers
, “
Role of syringeal muscles in gating airflow and sound production in singing brown thrashers
,”
J. Neurophysiol.
75
,
867
876
(
1996
).
16.
G. B.
Mindlin
,
T. J.
Gardner
,
F.
Goller
, and
R.
Suthers
, “
Experimental support for a model of birdsong production
,”
Phys. Rev. E
68
,
041908
(
2003
).
17.
Y. S.
Perl
,
E. M.
Arneodo
,
A.
Amador
,
F.
Goller
, and
G. B.
Mindlin
, “
Reconstruction of physiological instructions from zebra finch song
,”
Phys. Rev. E
84
,
051909
(
2011
).
18.
A.
Amador
,
Y. S.
Perl
,
G. B.
Mindlin
, and
D.
Margoliash
, “
Elemental gestures dynamics are encoded by song premotor cortical neurons
,”
Nature
495
,
59
64
(
2013
).
19.
F.
Hoppensteadt
and
E. M.
Izhikevich
,
Weakly Connected Neural Networks
(
Springer-Verlag
,
New York
,
1997
).
20.
J.
Prather
,
S.
Peters
,
S.
Nowicki
, and
R.
Mooney
, “
Precise auditory-vocal mirroring in neurons for learned vocal communication
,”
Nature
451
,
305
310
(
2008
).
You do not currently have access to this content.