In this paper, we study a two-parameter family of convex billiard tables, by taking the intersection of two round disks (with different radii) in the plane. These tables give a generalization of the one-parameter family of lemon-shaped billiards. Initially, there is only one ergodic table among all lemon tables. In our generalized family, we observe numerically the prevalence of ergodicity among the some perturbations of that table. Moreover, numerical estimates of the mixing rate of the billiard dynamics on some ergodic tables are also provided.

1.
E. G.
Altmann
,
T.
Friedrich
,
A. E.
Motter
,
H.
Kantz
, and
A.
Richter
, “
Prevalence of marginally unstable periodic orbits in chaotic billiards
,”
Phys. Rev. E
77
,
016205
(
2008
).
2.
D.
Armstead
,
B.
Hunt
, and
E.
Ott
, “
Power-law decay and self-similar distribution in stadium-type billiards
,”
Physica D
193
,
96
127
(
2004
).
3.
P.
Bálint
,
M.
Halász
,
J.
Hernández-Tahuilán
, and
D.
Sanders
, “
Chaos and stability in a two-parameter family of convex billiard tables
,”
Nonlinearity
24
,
1499
1521
(
2011
).
4.
G.
Benettin
and
J. M.
Strelcyn
, “
Numerical experiments on the free motion of a point mass moving in a plane convex region: Stochastic transition and entropy
,”
Phys. Rev. A
17
,
773
785
(
1978
).
5.
L. A.
Bunimovich
, “
On ergodic properties of certain billiards
,”
Funct. Anal. Appl.
8
,
254
255
(
1974
).
6.
L. A.
Bunimovich
,
On Absolutely Focusing Mirrors
, Ergodic Theory and Related Topics, Vol. III (Güstrow, 1990), Lecturer Notes in Mathematics Vol. 1514 (
Springer-Verlag
,
1992
), pp.
62
82
.
7.
L. A.
Bunimovich
, “
Mushrooms and other billiards with divided phase space
,”
Chaos
11
,
802
808
(
2001
).
8.
N.
Chernov
and
R.
Markarian
, “
Chaotic billiards
,” Mathematical Surveys Monograph No. 127 (American Mathematical Society, Providence, RI,
2006
).
9.
N.
Chernov
and
H.-K.
Zhang
, “
Billiards with polynomial mixing rates
,”
Nonlinearity
18
,
1527
1553
(
2005
).
10.
N.
Chernov
and
H.-K.
Zhang
, “
Improved estimates for correlations in billiards
,”
Commun. Math. Phys.
277
,
305
321
(
2008
).
11.
M. J.
Dias Carneiro
,
S.
Oliffson Kamphorst
, and
S.
Pintode Carvalho
, “
Elliptic islands in strictly convex billiards
,”
Ergod. Theory Dyn. Syst.
23
,
799
812
(
2003
).
12.
V.
Donnay
, “
Using integrability to produce chaos: billiards with positive entropy
,”
Commun. Math. Phys.
141
,
225
257
(
1991
).
13.
C.
Foltin
, “
Billiards with positive topological entropy
,”
Nonlinearity
15
,
2053
2076
(
2002
).
14.
A.
Hayli
, “
Numerical exploration of a family of strictly convex billiards with boundary of class C2
,”
J. Stat. Phys.
83
,
71
79
(
1996
).
15.
E.
Heller
and
S.
Tomsovic
, “
Postmodern quantum mechanics
,”
Phys. Today
46
(
7
),
38
46
(
1993
).
16.
M.
Hénon
and
J.
Wisdom
, “
The Benettin–Strelcyn oval billiard revisited
,”
Physica D
8
,
157
169
(
1983
).
17.
V.
Lopac
,
I.
Mrkonjic
, and
D.
Radic
, “
Classical and quantum chaos in the generalized parabolic lemon-shaped billiards
,”
Phys. Rev. E
59
,
303
311
(
1999
).
18.
V.
Lopac
,
I.
Mrkonjic
, and
D.
Radic
, “
Chaotic behavior in lemon-shaped billiards with elliptical and hyperbolic boundary arcs
,”
Phys. Rev. E
64
,
016214
(
2001
).
19.
H.
Makino
,
T.
Harayama
, and
Y.
Aizawa
, “
Quantum-classical correspondences of the Berry-Robnik parameter through bifurcations in lemon billiard systems
,”
Phys. Rev. E
63
,
056203
(
2001
).
20.
R.
Markarian
, “
Billiards with Pesin region of measure one
,”
Commun. Math. Phys.
118
,
87
97
(
1988
).
21.
R.
Markarian
, “
Billiards with polynomial decay of correlations
,”
Ergod. Theory Dyn. Syst.
24
,
177
197
(
2004
).
22.
S.
Oliffson Kamphorst
and
S.
Pinto-de-Carvalho
, “
The first Birkhoff coefficient and the stability of 2-periodic orbits on billiards
,”
Exp. Math.
14
(
3
),
299
306
(
2005
).
23.
S.
Ree
and
L. E.
Reichl
, “
Classical and quantum chaos in a circular billiard with a straight cut
,”
Phys. Rev. E
60
,
1607
(
1999
).
24.
N.
Saito
,
H.
Hirooka
,
J.
Ford
,
F.
Vivaldi
, and
G. H.
Walker
, “
Numerical study of billiard motion in an annulus bounded by non-concentric circles
,”
Physica D
5
,
273
286
(
1982
).
25.
Y.
Sinaǐ
, “
Dynamical systems with elastic reflections
,”
Russ. Math. Surveys
25
,
137
191
(
1970
).
26.
M.
Wojtkowski
, “
Principles for the design of billiards with nonvanishing Lyapunov exponents
,”
Commun. Math. Phys.
105
,
391
414
(
1986
).
You do not currently have access to this content.