Despite rapid advances over the last decade, synthetic biology lacks the predictive tools needed to enable rational design. Unlike established engineering disciplines, the engineering of synthetic gene circuits still relies heavily on experimental trial-and-error, a time-consuming and inefficient process that slows down the biological design cycle. This reliance on experimental tuning is because current modeling approaches are unable to make reliable predictions about the in vivo behavior of synthetic circuits. A major reason for this lack of predictability is that current models view circuits in isolation, ignoring the vast number of complex cellular processes that impinge on the dynamics of the synthetic circuit and vice versa. To address this problem, we present a modeling approach for the design of synthetic circuits in the context of cellular networks. Using the recently published whole-cell model of Mycoplasma genitalium, we examined the effect of adding genes into the host genome. We also investigated how codon usage correlates with gene expression and find agreement with existing experimental results. Finally, we successfully implemented a synthetic Goodwin oscillator in the whole-cell model. We provide an updated software framework for the whole-cell model that lays the foundation for the integration of whole-cell models with synthetic gene circuit models. This software framework is made freely available to the community to enable future extensions. We envision that this approach will be critical to transforming the field of synthetic biology into a rational and predictive engineering discipline.

1.
A. A.
Cheng
and
T. K.
Lu
, “
Synthetic biology: An emerging engineering discipline
,”
Annu. Rev. Biomed. Eng.
14
,
155
178
(
2012
).
2.
A. S.
Khalil
and
J. J.
Collins
, “
Synthetic biology: Applications come of age
,”
Nat. Rev. Genet.
11
,
367
379
(
2010
).
3.
C. M.
Agapakis
and
P. A.
Silver
, “
Synthetic biology: Exploring and exploiting genetic modularity through the design of novel biological networks
,”
Mol. Biosyst.
5
,
704
713
(
2009
).
4.
A.
Arkin
, “
Setting the standard in synthetic biology
,”
Nat. Biotechnol.
26
,
771
774
(
2008
).
5.
D.
Endy
, “
Foundations for engineering biology
,”
Nature
438
,
449
453
(
2005
).
6.
Y. Y.
Chen
,
K. E.
Galloway
, and
C. D.
Smolke
, “
Synthetic biology: Advancing biological frontiers by building synthetic systems
,”
Genome Biol.
13
,
240
(
2012
).
7.
N. J.
Guido
 et al, “
A bottom-up approach to gene regulation
,”
Nature
439
,
856
860
(
2006
).
8.
M.
Tigges
,
T. T.
Marquez-Lago
,
J.
Stelling
, and
M.
Fussenegger
, “
A tunable synthetic mammalian oscillator
,”
Nature
457
,
309
312
(
2009
).
9.
J.
Stricker
 et al, “
A fast, robust and tunable synthetic gene oscillator
,”
Nature
456
,
516
U39
(
2008
).
10.
M. B.
Elowitz
and
S.
Leibler
, “
A synthetic oscillatory network of transcriptional regulators
,”
Nature
403
,
335
338
(
2000
).
11.
M.
Kaern
,
T. C.
Elston
,
W. J.
Blake
, and
J. J.
Collins
, “
Stochasticity in gene expression: From theories to phenotypes
,”
Nat. Rev. Genet.
6
,
451
464
(
2005
).
12.
M.
Yoda
,
T.
Ushikubo
,
W.
Inoue
, and
M.
Sasai
, “
Roles of noise in single and coupled multiple genetic oscillators
,”
J. Chem. Phys.
126
,
115101
(
2007
).
13.
P.
Marguet
,
Y.
Tanouchi
,
E.
Spitz
,
C.
Smith
, and
L.
You
, “
Oscillations by minimal bacterial suicide circuits reveal hidden facets of host-circuit physiology
,”
PLoS ONE
5
,
e11909
(
2010
).
14.
Y.
Tanouchi
,
A.
Pai
,
N. E.
Buchler
, and
L.
You
, “
Programming stress-induced altruistic death in engineered bacteria
,”
Mol. Syst. Biol.
8
,
626
(
2012
).
15.
A.
Pai
,
Y.
Tanouchi
,
C. H.
Collins
, and
L.
You
, “
Engineering multicellular systems by cell-cell communication
,”
Curr. Opin. Biotechnol.
20
,
461
470
(
2009
).
16.
D.
Nevozhay
,
T.
Zal
, and
G.
Balázsi
, “
Transferring a synthetic gene circuit from yeast to mammalian cells
,”
Nat. Commun.
4
,
1451
(
2013
).
17.
J. R.
Karr
 et al, “
A whole-cell computational model predicts phenotype from genotype
,”
Cell
150
,
389
401
(
2012
).
18.
C. M.
Fraser
 et al, “
The minimal gene complement of Mycoplasma genitalium
,”
Science (N.Y.)
270
,
397
403
(
1995
).
19.
J. D.
Orth
,
I.
Thiele
, and
B. Ø.
Palsson
, “
What is flux balance analysis?
Nat. Biotechnol.
28
,
245
248
(
2010
).
20.
G.
Kudla
,
A. W.
Murray
,
D.
Tollervey
, and
J. B.
Plotkin
, “
Coding-sequence determinants of gene expression in Escherichia coli
,”
Science (N.Y.)
324
,
255
258
(
2009
).
21.
M.
Lewis
, “
The lac repressor
,”
C. R. Biol.
328
,
521
548
(
2005
).
22.
T. S.
Gardner
,
C. R.
Cantor
, and
J. J.
Collins
, “
Construction of a genetic toggle switch in Escherichia coli
,”
Nature
403
,
339
342
(
2000
).
23.
M. R.
Atkinson
,
M. A.
Savageau
,
J. T.
Myers
, and
A. J.
Ninfa
, “
Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli
,”
Cell
113
,
597
607
(
2003
).
24.
See supplementary material at http://dx.doi.org/10.1063/1.4811182 for lacI sequences used and additional Goodwin oscillator simulations.
25.
C.
Berens
and
D.
Porschke
, “
Recognition of operator DNA by Tet repressor
,”
J. Phys. Chem. B
117
,
1880
1885
(
2013
).
26.
S. J.
Remington
, “
Green fluorescent protein: A perspective
,”
Protein Sci.
20
,
1509
1519
(
2011
).
27.
R.
Schleif
, “
AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action
,”
FEMS Microbiol. Rev.
34
,
779
796
(
2010
).
28.
A.
Grote
 et al, “
JCat: A novel tool to adapt codon usage of a target gene to its potential expression host
,”
Nucleic Acids Res.
33
,
W526
W531
(
2005
).
29.
M.
Welch
 et al, “
Design parameters to control synthetic gene expression in Escherichia coli
,”
PLoS ONE
4
,
e7002
(
2009
).
30.
B. C.
Goodwin
,
Temporal Organization in Cells. A Dynamic Theory of Cellular Control Processes
(
Academic Press
,
London
,
1963
).
31.
O.
Purcell
,
N. J.
Savery
,
C. S.
Grierson
, and
M.
Di Bernardo
, “
A comparative analysis of synthetic genetic oscillators
,”
J. R. Soc., Interface
7
,
1503
1524
(
2010
).
32.
T.
Makino
,
G.
Skretas
, and
G.
Georgiou
, “
Strain engineering for improved expression of recombinant proteins in bacteria
,”
Microb. Cell Factories
10
,
32
(
2011
).
33.
L.
Ma
,
G.
Zhang
, and
M. P.
Doyle
, “
Green fluorescent protein labeling of listeria, salmonella, and Escherichia coli O157:H7 for safety-related studies
,”
PLoS ONE
6
,
e18083
(
2011
).
34.
H.
Dong
,
L.
Nilsson
, and
C. G.
Kurland
, “
Gratuitous overexpression of genes in Escherichia coli leads to growth inhibition and ribosome destruction
,”
J. Bacteriol.
177
,
1497
1504
(
1995
).
35.
R. L.
Gourse
,
T.
Gaal
,
M. S.
Bartlett
,
J. A.
Appleman
, and
W.
Ross
, “
rRNA transcription and growth rate-dependent regulation of ribosome synthesis in Escherichia coli
,”
Annu. Rev. Microbiol.
50
,
645
677
(
1996
).
36.
P.
Jorgensen
 et al, “
A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size
,”
Genes Develop.
18
,
2491
2505
(
2004
).
37.
S.
Klumpp
and
T.
Hwa
, “
Growth-rate-dependent partitioning of RNA polymerases in bacteria
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
20245
20250
(
2008
).
38.
T.
Moss
, “
At the crossroads of growth control; making ribosomal RNA
,”
Curr. Opin. Genet. Develop.
14
,
210
217
(
2004
).
39.
C.
Lou
 et al, “
Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch
,”
Mol. Syst. Biol.
6
,
350
(
2010
).
40.
M. F.
Balish
,
R. T.
Santurri
,
A. M.
Ricci
,
K. K.
Lee
, and
D. C.
Krause
, “
Localization of Mycoplasma pneumoniae cytadherence-associated protein HMW2 by fusion with green fluorescent protein: Implications for attachment organelle structure
,”
Mol. Microbiol.
47
(
1
),
49
60
(
2003
).
41.
M.
Breton
 et al, “
First report of a tetracycline-inducible gene expression system for mollicutes
,”
Microbiology
156
,
198
205
(
2010
).
42.
D. G.
Gibson
 et al, “
Creation of a bacterial cell controlled by a chemically synthesized genome
,”
Science (N.Y.)
329
,
52
56
(
2010
).
43.
A.
Burger
,
A. M.
Walczak
, and
P. G.
Wolynes
, “
Abduction and asylum in the lives of transcription factors
,”
Proc. Natl. Acad. Sci. U.S.A.
107
,
4016
4021
(
2010
).
44.
T.-H.
Lee
and
N.
Maheshri
, “
A regulatory role for repeated decoy transcription factor binding sites in target gene expression
,”
Mol. Syst. Biol.
8
,
576
(
2012
).
45.
B.
Xia
 et al, “
Developer's and user's guide to Clotho v2.0 A software platform for the creation of synthetic biological systems
,”
Methods Enzymol.
498
,
97
135
(
2011
).
46.
M. J.
Czar
,
Y.
Cai
, and
J.
Peccoud
, “
Writing DNA with GenoCAD™
,”
Nucl. Acids Res.
37
,
W40
W47
(
2009
).
47.
Y.
Benenson
, “
Biomolecular computing systems: Principles, progress and potential
,”
Nat. Rev. Genet.
13
,
455
468
(
2012
).
48.
R.
Daniel
,
J. R.
Rubens
,
R.
Sarpeshkar
, and
T. K.
Lu
, “
Synthetic analog computation in living cells
,”
Nature
497
(
7451
),
619
623
(
2013
).
49.
Z.
Xie
,
L.
Wroblewska
,
L.
Prochazka
,
R.
Weiss
, and
Y.
Benenson
, “
Multi-input RNAi-based logic circuit for identification of specific cancer cells
,”
Science (N.Y.)
333
,
1307
1311
(
2011
).
50.
F.
Isaacs
,
D.
Dwyer
, and
J.
Collins
, “
RNA synthetic biology
,”
Nat. Biotechnol.
24
(
5
),
545
554
(
2006
).
51.
P.
Siuti
,
J.
Yazbek
, and
T. K.
Lu
, “
Synthetic circuits integrating logic and memory in living cells
,”
Nat. Biotechnol
31
(
5
),
448
452
(
2013
).
52.
E.
Gur
and
R. T.
Sauer
, “
Evolution of the ssrA degradation tag in Mycoplasma: Specificity switch to a different protease
,”
Proc. Natl. Acad. Sci. U.S.A.
105
,
16113
16118
(
2008
).

Supplementary Material

You do not currently have access to this content.