Discrete dynamic models are a powerful tool for the understanding and modeling of large biological networks. Although a lot of progress has been made in developing analysis tools for these models, there is still a need to find approaches that can directly relate the network structure to its dynamics. Of special interest is identifying the stable patterns of activity, i.e., the attractors of the system. This is a problem for large networks, because the state space of the system increases exponentially with network size. In this work, we present a novel network reduction approach that is based on finding network motifs that stabilize in a fixed state. Notably, we use a topological criterion to identify these motifs. Specifically, we find certain types of strongly connected components in a suitably expanded representation of the network. To test our method, we apply it to a dynamic network model for a type of cytotoxic T cell cancer and to an ensemble of random Boolean networks of size up to 200. Our results show that our method goes beyond reducing the network and in most cases can actually predict the dynamical repertoire of the nodes (fixed states or oscillations) in the attractors of the system.

1.
A. L.
Barabási
and
Z. N.
Oltvai
, “
Network biology: Understanding the cell's functional organization
,”
Nat. Rev. Genet.
5
,
101
113
(
2004
).
2.
S.
Bornholdt
, “
Systems biology: Less is more in modeling large genetic networks
,”
Science
310
(
5747
),
449
451
(
2005
).
3.
A.
Mogilner
,
J.
Allard
, and
R.
Wollman
, “
Cell polarity: Quantitative modeling as a tool in cell biology
,”
Science
336
(
6078
),
175
179
(
2012
).
4.
J. J.
Tyson
,
K. C.
Chen
, and
B.
Novak
, “
Network dynamics and cell physiology
,”
Nat. Rev. Mol. Cell Biol.
2
(
12
)
908
916
(
2001
).
5.
J. J.
Tyson
,
K. C.
Chen
, and
B.
Novak
, “
Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell
,”
Curr. Opin. Cell Biol.
15
,
221
231
(
2003
).
6.
A.
Mogilner
,
R.
Wollman
, and
W. F.
Marshall
, “
Quantitative modeling in cell biology: What is it good for?
,”
Develop. Cell
11
(
3
),
279
287
(
2006
).
7.
B. B.
Aldridge
,
J. M.
Burke
,
D. A.
Lauffenburger
, and
P. K.
Sorger
, “
Physicochemical modeling of cell signaling pathways
,”
Nat. Cell Biol.
8
,
1195
1203
(
2006
).
8.
R.
Albert
and
H. G.
Othmer
, “
The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster
,”
J. Theor. Biol.
223
(
1
),
1
18
(
2003
).
9.
C.
Espionza-Soto
,
P.
Padilla-Longoria
, and
E. R.
Alvarez-Buylla
, “
A gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles
,”
Plant Cell
16
,
2923
2939
(
2004
).
10.
D. A.
Orlando
,
C. Y.
Lin
,
A.
Bernard
,
J. Y.
Wang
,
J. E. S.
Socolar
,
E. S.
Iversen
,
A. J.
Hartemink
, and
S. B.
Haase
, “
Global control of cell-cycle transcription by coupled CDK and network oscillators
,”
Nature
453
,
944
947
(
2008
).
11.
R.
Zhang
,
M. V.
Shah
,
J.
Yang
,
S. B.
Nyland
,
X.
Liu
,
J. K.
Yun
,
R.
Albert
, and
T. P.
Loughran
, “
Network model of survival signaling in LGL leukemia
,”
Proc. Natl. Acad. Sci.
105
,
16308
16313
(
2008
).
12.
J.
Saez-Rodriguez
,
L.
Simeoni
,
J. A.
Lindquist
,
R.
Hemenway
,
U.
Bommhardt
,
B.
Arndt
,
U. U.
Haus
,
R.
Weismantel
,
E. D.
Gilles
,
S.
Klamt
, and
B.
Schraven
, “
A logical model provides insights into T cell receptor signaling
,”
PLoS Comput. Biol.
3
,
e163
(
2007
).
13.
R. S.
Wang
and
R.
Albert
, “
Discrete dynamic modeling of cellular signaling networks
,”
Methods Enzymol.
467
,
281
306
(
2009
).
14.
R.
Albert
and
H. G.
Othmer
, “
But no kinetic details are needed
,”
SIAM News
36
(
10
) (
2003
).
15.
F.
Jacob
and
J.
Monod
, “
Genetic regulatory mechanisms in the synthesis of proteins
,”
J. Mol. Biol.
3
,
318
356
(
1961
).
16.
R.
Thomas
, “
Boolean formalization of genetic control circuits
,”
J. Theor. Biol.
42
,
563
585
(
1973
).
17.
S. A.
Kauffman
, “
Metabolic stability and epigenesis in randomly constructed genetic nets
,”
J. Theor. Biol.
22
,
437
467
(
1969
).
18.
L.
Glass
and
S. A.
Kauffman
, “
The logical analysis of continous, nonlinear biochemical control networks
,”
J. Theor. Biol.
39
,
103
129
(
1973
).
19.
R.
Thomas
,
On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States and Sustained Oscillations
, Series in Synergetics Vol. 9 (
Springer
,
1981
), pp.
180
193
.
20.
E.
Plahte
, “
Feedback loops, stability and multistationarity in dynamical systems
,”
J. Biol. Syst.
3
,
409
413
(
1995
).
21.
E. H.
Snoussi
, “
Necessary conditions for multistationarity and stable periodicity
,”
J. Biol. Syst.
6
,
3
9
(
1998
).
22.
J. L.
Gouzé
, “
Positive and negative circuits in dynamical systems
,”
J. Biol. Syst.
6
,
11
15
(
1998
).
23.
C.
Soulé
, “
Graphic requirements for multistationarity
,”
ComPlexUs
1
,
123
133
(
2003
).
24.
J.
Aracena
,
J.
Demongeot
, and
E.
Goles
, “
On limit cycles of monotone functions with symmetric connection graph
,”
Theor. Comput. Sci.
322
,
237
244
(
2004
).
25.
É.
Remy
and
P.
Ruet
, “
On differentiation and homeostatic behaviours of Boolean dynamical systems
,” in
Transactions on Computational Systems Biology
, Lecture Notes in Computer Science Vol. 4780 (
Springer
,
2007
), pp.
92
101
.
26.
É.
Remy
,
P.
Ruet
, and
D.
Thieffry
, “
Graphic requirements for multistability and attractive cycles in a Boolean dynamical framework
,”
Adv. Appl. Math.
41
(
3
),
335
350
(
2008
).
27.
É.
Remy
and
P.
Ruet
, “
From minimal signed circuits to the dynamics of Boolean regulatory networks
,”
Bioinformatics
24
(
16
),
220
226
(
2008
).
28.
H.
Siebert
, “
Deriving behavior of Boolean bioregulatory networks from subnetwork dynamics
,”
Math. Comput. Sci.
2
,
421
442
(
2009
).
29.
I.
Harvey
and
T.
Bossomaie
, “
Time out of join: Attractors in asynchronous random Boolean networks
,” in
Proceedings of the Fourth European Conferences on Artificial Life
(Cambridge, UK,
1997
), pp.
67
75
.
30.
M.
Chaves
,
R.
Albert
, and
E. D.
Sontag
, “
Robustness and fragility of Boolean models for genetic regulatory networks
,”
J. Theor. Biol.
235
,
431
449
(
2005
).
31.
L.
Glass
, “
Classification of biological networks by their qualitative dynamics
,”
J. Theor. Biol.
54
(
1
),
85
107
(
1975
).
32.
R.
Thomas
,
D.
Thieffry
, and
M.
Kaufman
, “
Dynamical behaviour of biological regulatory networks–I. Biological role of feedback loops and practical use of the concept of the loop-characteristic state
,”
Bull. Math. Biol.
57
(
2
),
247
276
(
1995
).
33.
V.
Sevim
,
X.
Gong
, and
J. E.
Socolar
, “
Reliability of transcriptional cycles and the yeast cell-cycle oscillator
,”
PLoS Comput. Biol.
6
(
7
),
e1000842
(
2010
).
34.
M.
Chaves
,
E. D.
Sontag
, and
R.
Albert
, “
Methods of robustness analysis for Boolean models of gene control networks
,”
Syst. Biol. (Stevenage)
153
(
4
),
154
167
(
2006
).
35.
A.
Saadatpour
,
I.
Albert
, and
R.
Albert
, “
Attractor analysis of asynchronous Boolean models of signal transduction networks
,”
J. Theor. Biol.
266
,
641
656
(
2010
).
36.
A.
Naldi
,
É.
Remy
,
D.
Thieffry
, and
C.
Chaouiya
, “
Dynamically consistent reduction of logical regulatory graphs
,”
Theor. Comput. Sci.
412
,
2207
2218
(
2011
).
37.
A.
Veliz-Cuba
, “
Reduction of Boolean network models
,”
J. Theor. Biol.
289
,
167
172
(
2011
).
38.
S.
Bilke
and
F.
Sjunnesson
, “
Stability of the Kauffman model
,”
Phys. Rev. E
65
,
016129
(
2001
).
39.
J. E.
Socolar
and
S. A.
Kauffman
, “
Scaling in ordered and critical random Boolean networks
,”
Phys. Rev. Lett.
90
,
068702
(
2003
).
40.
T.
Mihaljev
and
B.
Drossel
, “
Scaling in a general class of critical random Boolean networks
,”
Phys. Rev. E
74
,
046101
(
2006
).
41.
A.
Saadatpour
,
R.-S.
Wang
,
A.
Liao
,
X.
Liu
,
T. P.
Loughran
,
I.
Albert
, and
R.
Albert
, “
Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia
,”
PLoS Comput. Biol.
7
(
11
),
e1002267
(
2011
).
42.
R. S.
Wang
and
R.
Albert
, “
Elementary signaling modes predict the essentiality of signal transduction network components
,”
BMC Syst. Biol.
5
,
44
(
2011
).
43.
E. H.
Snoussi
and
R.
Thomas
, “
Logical identification of all steady states: The concept of feedback loop characteristic states
,”
Bull. Math. Biol.
55
(
5
),
973
991
(
1993
).
44.
S.
Klamt
,
J.
Saez-Rodriguez
, and
E. D.
Gilles
, “
Structural and functional analysis of cellular networks with CellNetAnalyzer
,”
BMC Syst. Biol.
1
,
2
(
2007
).
45.
D. B.
Johnson
, “
Finding all the elementary circuits of a directed graph
,”
SIAM J. Comput.
4
(
1
),
77
84
(
1975
).
46.
M.
Aldana-Gonzalez
,
S.
Coppersmith
, and
L. P.
Kadanoff
, “
Boolean dynamics with random couplings
,” in
Perspectives and Problems in Nonlinear Science
, A celebratory volume in honor of Lawrence Sirovich, Springer Applied Mathematical Sciences Series, edited by
Ehud
Kaplan
,
Jerrold E.
Marsden
, and
Katepalli R.
Sreenivasan
(
2003
), pp.
23
89
.
47.
M.
Aldana
, “
Dynamics of Boolean networks with scale free topology
,”
Physica D
185
(
1
),
45
66
(
2003
).
48.
S. E.
Harris
,
B. K.
Sawhill
,
A.
Wuensche
, and
S.
Kauffman
, “
A model of transcriptional regulatory networks based on biases in the observed regulation rules
,”
Complexity
7
(
4
),
23
40
(
2002
).
49.
J. G. T.
Zañudo
,
M.
Aldana
, and
G.
Martinez-Mekler
, “
Boolean threshold networks: Virtues and limitations for biological modeling
,” in
Information Processing and Biological Systems
(
Springer
,
Berlin
,
2011
), pp.
113
151
.
50.
D. M.
Wittmann
,
C.
Marr
, and
F. J.
Theis
, “
Biologically meaningful update rules increase the critical connectivity of generalized Kauffman networks
,”
J. Theor. Biol.
266
(
3
),
436
448
(
2010
).
51.
I.
Shmulevich
,
S. A.
Kauffman
, and
M.
Aldana
, “
Eukaryotic cells are dynamically ordered or critical but not chaotic
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
13439
13444
(
2005
).
52.
M.
Nykter
,
N. D.
Price
,
M.
Aldana
,
S. A.
Ramsey
,
S. A.
Kauffman
 et al., “
Gene expression dynamics in the macrophage exhibit criticality
,”
P roc. Natl. Acad. Sci. U.S.A.
105
,
1897
1900
(
2008
).
53.
M. V.
Shah
,
R.
Zhang
,
R.
Irby
,
R.
Kothapalli
,
X.
Liu
 et al., “
Molecular profiling of LGL leukemia reveals role of sphingolipid signaling in survival of cytotoxic lymphocytes
,”
Blood
112
,
770
781
(
2008
).
54.
T. P.
Loughran
, Jr.
,
J. A.
Aprile
, and
F. W.
Ruscetti
, “
Anti-CD3 monoclonal antibody-mediated cytotoxicity occurs through an interleukin-2-independent pathway in CD3+ large granular lymphocytes
,”
Blood
75
,
935
940
(
1990
).
55.
R.
Kothapalli
,
S. B.
Nyland
,
I.
Kusmartseva
,
R. D.
Bailey
,
T. M.
McKeown
 et al., “
Constitutive production of proinflammatory cytokines RANTES, MIP-1, and IL-18 characterizes LGL leukemia
,”
Int. J. Oncol.
26
(
2
),
529
535
(
2005
).
56.
A.
Saadatpour
,
R.
Albert
, and
T.
Reluga
, “
A reduction method for Boolean network models proven to conserve attractors
,”
SIAM J. Appl. Dyn. Syst.
(submitted).
57.
R. S.
Wang
and
R.
Albert
, “
Effects of community structure on the dynamics of random threshold networks
,”
Phys. Rev. E
87
,
012810
(
2013
).
58.
F.
Greil
and
B.
Drossel
, “
Dynamics of critical Kauffman networks under asynchronous stochastic update
,”
Phys. Rev. Lett.
95
,
048701
(
2005
).
59.
G. Y.
Vichniac
, “
Boolean derivatives on cellular automata
,”
Physica D
45
(
1
),
63
74
(
1990
).
You do not currently have access to this content.