The global dynamics of gene regulatory networks are known to show robustness to perturbations in the form of intrinsic and extrinsic noise, as well as mutations of individual genes. One molecular mechanism underlying this robustness has been identified as the action of so-called microRNAs that operate via feedforward loops. We present results of a computational study, using the modeling framework of stochastic Boolean networks, which explores the role that such network motifs play in stabilizing global dynamics. The paper introduces a new measure for the stability of stochastic networks. The results show that certain types of feedforward loops do indeed buffer the network against stochastic effects.
REFERENCES
1.
C. H.
Waddington
, “Canalisation of development and the inheritance of acquired characters
,” Nature
150
, 563
–564
(1942
).2.
E.
Avigdor
and M.
Elowitz
, “Functional roles for noise in genetic circuits
,” Nature
467
, 167
–173
(2010
).3.
V.
Ambros
, “The functions of animal microRNAs
,” Nature
431
, 350
–355
(2004
).4.
D.
Bartel
, “MicroRNAs: Target recognition and regulatory functions
,” Cell
136
, 215
–233
(2009
).5.
A.
Stark
, J.
Brennecke
, N.
Bushati
, R.
Russell
, and S.
Cohen
, “Animal microRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution
,” Cell
123
, 1133
–1146
(2005
).6.
E.
Hornstein
and N.
Shomron
, “Canalization of development by microRNAs
,” Nat. Genet.
38
, S20
–24
(2006
).7.
L.
MacNeil
and A.
Walhout
, “Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression
,” Genome Res.
21
, 645
–657
(2011
).8.
S.
Mangan
and U.
Alon
, “Structure and function of the feed-forward loop network motif
,” Proc. Natl. Acad. Sci. U.S.A.
100
, 11980
–11985
(2003
).9.
M.
von Dassow
and L.
Davidson
, “Physics and the canalization of morphogenesis: A grand challenge in organismal biology
,” Phys. Biol.
8
(4), 045002
(2011
).10.
S.
Huang
, “Tumor progression: Chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution
,” Prog. Biophys. Mol. Biol.
110
, 69
–86
(2012
).11.
K.
Kaneko
, “Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness
,” Bioessays
33
, 403
–413
(2011
).12.
J.-P.
Capp
, “Stochastic gene expression is the driving force of cancer
,” Bioessays
33
, 781
–782
(2011
).13.
B.
Laforge
, D.
Guez
, M.
Martinez
, and J.
Kupiec
, “Modeling embryogenesis and cancer: An approach based on an equilibrium between autostabilization of stochastic gene expression and the interdependence of cells for proliferation
,” Prog. Biophys. Mol. Biol.
89
, 93
–120
(2005
).14.
S.
Kauffman
, “Differentiation of malignant to benign cells
,” J. Theor. Biol.
31
, 429
–451
(1971
).15.
K.
Bassler
, C.
Lee
, and Y.
Lee
, “Evolution of developmental canalization in networks of competing boolean nodes
,” Phys. Rev. Lett.
93
(3), 038101
(2004
).16.
E.
Huerta-Sanchez
and R.
Durrett
, “Wagner's canalization model
,” Theor. Popul. Biol.
71
, 121
–130
(2007
).17.
T.
Jia
and R.
Kulkarni
, “Post-transcriptional regulation of noise in protein distributions during gene expression
,” Phys. Rev. Lett.
105
(1), 018101
(2010
).18.
M.
Osella
, C.
Bosia
, D.
Cora
, and M.
Caselle
, “The role of incoherent microrna-mediated feedforward loops in noise buffering
,” PLoS Comput. Biol.
7
(3), e1001101
(2011
).19.
M. A.
Valencia-Sanchez
, J.
Liu
, G. J.
Hannon
, and R.
Parker
, “Control of translation and mRNA degradation by miRNAs and siRNAs
,” Genes Dev.
20
, 515
–524
(2006
).20.
D.
Murrugarra
, A.
Veliz-Cuba
, B.
Aguilar
, S.
Arat
, and R.
Laubenbacher
, “Modeling stochasticity and variability in gene regulatory networks
,” EURASIP J. Bioinform. Syst. Biol.
2012
, 5
(2012
).21.
I.
Albert
, J.
Thakar
, S.
Li
, R.
Zhang
, and R.
Albert
, “Boolean network simulations for life scientists
,” Source Code Biol. Med.
3
, 16
(2008
).22.
M.
Aldana
, E.
Balleza
, S.
Kauffman
, and O.
Resendiz
, “Robustness and evolvability in genetic regulatory networks
,” J. Theor. Biol.
245
, 433
–448
(2007
).23.
J.
Kim
, K.
Inoue
, J.
Ishii
, W. B.
Vanti
, S. V.
Voronov
, E.
Murchison
, G.
Hannon
, and A.
Abeliovich
, “A MicroRNA feedback circuit in midbrain dopamine neurons
,” Science
317
, 1220
–1224
(2007
).24.
B.
Derrida
and G.
Weisbuch
, “Evolution of overlaps between configurations in random boolean networks
,” J. Phys.
47
, 1297
–1303
(1986
).25.
S.
Kauffman
, C.
Peterson
, B.
Samuelsson
, and C.
Troein
, “Random Boolean network models and the yeast transcriptional network
,” Proc. Natl. Acad. Sci. U.S.A.
100
, 14796
–14799
(2003
).26.
S. S.
Shen-Orr
, R.
Milo
, S.
Mangan
, and U.
Alon
, “Network motifs in the transcriptional regulation network of Escherichia coli
,” Nat. Genet.
31
, 64
–68
(2002
).27.
R.
Milo
, S.
Shen-Orr
, S.
Itzkovitz
, N.
Kashtan
, D.
Chklovskii
, and U.
Alon
, “Network motifs: Simple building blocks of complex networks
,” Science
298
, 824
–827
(2002
).28.
S.
Ishihara
, K.
Fujimoto
, and T.
Shibata
, “Cross talking of network motifs in gene regulation that generates temporal pulses and spatial stripes
,” Genes Cells
10
, 1025
–1038
(2005
).© 2013 AIP Publishing LLC.
2013
AIP Publishing LLC
You do not currently have access to this content.