The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.

1.
E. N.
Lorenz
, “
The local structure of a chaotic attractor in four dimensions
,”
Physica D
13
,
90
104
(
1984
).
2.
D. E.
Sigeti
, “
Exponential decay of power spectra at high frequency and positive Lyapunov exponents
,”
Physica D
82
,
136
153
(
1995
).
3.
J. L.
Hudson
,
O. E.
Rössler
, and
H. C.
Killory
, “
Chaos in a four-variable piecewise-linear system of differential equations
,”
IEEE Trans. Circuits Syst.
35
,
902
908
(
1988
).
4.
E.
Abu-Ramadan
,
J. M.
Hay
, and
R. E.
Khayat
, “
Characterization of chaotic thermal convection of viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
115
,
79
113
(
2003
).
5.
J. C.
Sprott
,
Chaos and Time-Series Analysis
(
Oxford University Press
,
Oxford
,
2003
).
6.
D. T. J.
Liley
,
P. J.
Cadusch
, and
M. P.
Dafilis
, “
A spatially continuous mean field theory of electrocortical activity
,”
Network: Computation in Neural Systems
13
,
67
113
(
2002
).
7.
Y.
Pomeau
and
P.
Manneville
, “
Intermittent transition to turbulence in dissipative dynamical systems
,”
Commun. Math. Phys.
74
,
189
197
(
1980
).
8.
R.
Ilin
and
R.
Kozma
, “
Stability of coupled excitatory-inhibitory neural populations and application to control of multi-stable systems
,”
Phys. Lett. A
360
,
66
83
(
2006
).
9.
W. J.
Freeman
, “
Tutorial in neurobiology: From single neurons to brain chaos
,”
Int. J. Bifurcation Chaos
2
,
451
482
(
1992
).
10.
W. J.
Freeman
and
S.
Jakubith
, “
Bifurcation analysis of continuous time dynamics of oscillatory neural networks
,” in
Brain Theory
, edited by
A.
Aertsen
(
Elsevier Science Publishers B.V.
,
Netherlands
,
1993
).
11.
M. P.
Dafilis
,
F.
Frascoli
,
P. J.
Cadusch
, and
D. T. J.
Liley
, “
Chaos and generalised multistability in a mesoscopic model of the electroencephalogram
,”
Physica D
238
,
1056
1060
(
2009
).
12.
M. P.
Dafilis
,
D. T. J.
Liley
, and
P. J.
Cadusch
, “
Robust chaos in a model of the electroencephalogram: Implications for brain dynamics
,”
Chaos
11
,
474
478
(
2001
).
13.
L.
van Veen
and
D. T. J.
Liley
, “
Chaos via Shilnikov's saddle-node bifurcation in a theory of the electroencephalogram
,”
Phys. Rev. Lett.
97
,
208101
(
2006
).
14.
D. T. J.
Liley
and
I.
Bojak
, “
Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents
,”
J. Clin. Neurophysiol.
22
,
300
313
(
2005
).
15.
I.
Bojak
and
D. T. J.
Liley
, “
Modeling the effects of anesthesia on the electroencephalogram
,”
Phys. Rev. E
71
,
041902
(
2005
).
16.
F.
Frascoli
,
L.
Van Veen
,
I.
Bojak
, and
D. T. J.
Liley
, “
Metabifurcation analysis of a mean field model of the cortex
,”
Physica D
240
,
949
962
(
2011
).
17.
B.
Ermentrout
,
Simulating, Analyzing, and Animating Dynamical Systems: A Guide to xppaut for Researchers and Students
(
SIAM
,
Philadelpha, PA
,
2002
).
18.
F.
Christiansen
and
H. H.
Rugh
, “
Computing Lyapunov spectra with continuous Gram-Schmidt orthonormalization
,”
Nonlinearity
10
,
1063
1072
(
1997
).
19.
S. D.
Cohen
and
A. C.
Hindmarsh
, “
CVODE, a stiff/nonstiff ODE solver in C
,”
Comput. Phys.
10
,
138
143
(
1996
).
20.
E. J.
Doedel
, “
AUTO: A program for the automatic bifurcation analysis of autonomous systems
,”
Congr. Numer.
30
,
265
284
(
1981
).
21.
E.
Ott
,
Chaos in Dynamical Systems
(
Cambridge University Press
,
New York, NY
,
2002
).
22.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
New York, NY
,
2004
).
23.
M. P.
Dafilis
,
N. C.
Sinclair
,
P. J.
Cadusch
, and
D. T. J.
Liley
, “
Re-evaluating the performance of the nonlinear prediction error for the detection of deterministic dynamics
,”
Physica D
240
,
695
700
(
2011
).
24.
C. J.
Stam
, “
Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field
,”
Clin. Neurophys.
116
,
2266
2301
(
2005
).
25.
M.
Steriade
,
F.
Amzica
, and
D.
Contreras
, “
Cortical and thalamic cellular correlates of electroencephalographic burst-suppression
,”
Electroencephalogr. Clin. Neurophysiol.
90
,
1
16
(
1994
).
26.
W. P.
Akrawi
,
J. C.
Drummond
,
C. J.
Kalkman
, and
P. M.
Patel
, “
A comparison of the electrophysiologic characteristics of EEG burst-suppression as produced by isoflurane, thiopental, etomidate, and propofol
,”
J. Neurosurg. Anesthesiol.
8
,
40
46
(
1996
).
27.
S.
Ohtahara
and
Y.
Yamatogi
, “
Epileptic encephalopathies in early infancy with suppression-burst
,”
J. Neuroclin. Neurophys.
20
,
398
407
(
2003
).
You do not currently have access to this content.