The present work aims to apply a recently proposed method for estimating Lyapunov exponents to characterize—with the aid of the metric entropy and the fractal dimension—the degree of information and the topological structure associated with multiscroll attractors. In particular, the employed methodology offers the possibility of obtaining the whole Lyapunov spectrum directly from the state equations without employing any linearization procedure or time series-based analysis. As a main result, the predictability and the complexity associated with the phase trajectory were quantified as the number of scrolls are progressively increased for a particular piecewise linear model. In general, it is shown here that the trajectory tends to increase its complexity and unpredictability following an exponential behaviour with the addition of scrolls towards to an upper bound limit, except for some degenerated situations where a non-uniform grid of scrolls is attained. Moreover, the approach employed here also provides an easy way for estimating the finite time Lyapunov exponents of the dynamics and, consequently, the Lagrangian coherent structures for the vector field. These structures are particularly important to understand the stretching/folding behaviour underlying the chaotic multiscroll structure and can provide a better insight of phase space partition and exploration as new scrolls are progressively added to the attractor.

1.
H. D. I.
Abarbanel
,
Analysis of Observed Chaotic Data
, 1st ed., Institute for Nonlinear Science (
Springer-Verlag New York, Inc
,
1996
).
2.
M.
Adachi
and
K.
Aihara
, “
Associative dynamics in a chaotic neural network
,”
Neural Networks
10
,
83
98
(
1997
).
3.
L. A.
Aguirre
, “
A nonlinear correlation function for selecting the delay time in dynamical reconstructions
,”
Phys. Lett. A
203
,
88
94
(
1995
).
4.
L. A.
Aguirre
, “
A tutorial introduction to nonlinear dynamics and chaos, Part II: Modeling and control
,”
Sba: Controle e Automação
7
,
50
66
(
1996
).
5.
G. F. V.
Amaral
,
C.
Letellier
, and
L. A.
Aguirre
, “
Piecewise affine models of chaotic attractors: The Rössler and Lorenz systems
,”
Chaos
16
,
013115
(
2006
).
6.
P.
Arena
,
S.
Baglio
,
L.
Fortuna
, and
G.
Manganaro
, “
Generation of n-double scrolls via cellular neural networks
,”
Int. J. Circuit Theory Appl.
24
,
241
252
(
1996
).
7.
P.
Arena
,
S.
De Fiore
,
L.
Fortuna
,
M.
Frasca
,
L.
Patané
, and
G.
Vagliasindi
, “
Reactive navigation through multiscroll systems: From theory to real-time implementation
,”
Auton. Rob.
25
,
123
146
(
2008
).
8.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
, “
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part 1: Theory
,”
Meccanica
15
,
9
20
(
1980
).
9.
G.
Boffetta
,
M.
Cencini
,
M.
Falcioni
, and
A.
Vulpiani
, “
Predictability: A way to characterize complexity
,”
Phys. Rep.
356
,
367
474
(
2002
).
10.
S. L.
Brunton
and
C. W.
Rowley
, “
Fast computation of finite-time Lyapunov exponent fields for unsteady flows
,”
Chaos
20
,
017503
(
2010
).
11.
D.
Cafagna
and
G.
Grassi
, “
Hyperchaotic coupled chua circuits: An approach for generating new n × m-scroll attractors
,”
Int. J. Bifurcation Chaos
13
,
2537
2550
(
2003
).
12.
E.
Campos-Cantón
,
J. G.
Barajas-Ramírez
,
G.
Solis-Perales
, and
R.
Femat
, “
Multiscroll attractors by switching systems
,”
Chaos
20
,
013116
(
2010
).
13.
L. O.
Chua
,
M.
Komuro
, and
T.
Matsumoto
, “
The double scroll family
,”
IEEE Trans. Circuits Syst.
33
(
11
),
1072
1118
(
1986
).
14.
S. K.
Dana
,
B. K.
Singh
,
S.
Chakraborty
,
R. C.
Yadav
,
J.
Kurths
,
G. V.
Osipov
,
P. K.
Roy
, and
C.-K.
Hu
, “
Multiscroll in coupled double scroll type oscillators
,”
Int. J. Bifurcation Chaos
18
,
2965
2980
(
2008
).
15.
J.-P.
Eckmann
and
D.
Ruelle
, “
Ergodic theory of chaos and strange attractors
,”
Rev. Mod. Phys.
57
,
617
656
(
1985
).
16.
F. I.
Fazanaro
,
D. C.
Soriano
,
R.
Suyama
,
M. K.
Madrid
,
R.
Attux
, and
J. R.
de Oliveira
, “
Information generation and Lagrangian coherent structures in multiscroll attractors
,” in
3rd IFAC Conference on Analysis and Control of Chaotic Systems, 2012 (3rd IFAC CHAOS, 2012)
(
Cancún, México
,
2012
), pp.
47
52
.
17.
P.
Grassberger
, “
Estimating the fractal dimensions and entropies of strange attractors
,” in
Chaos
, edited by
A. V.
Holden
(
Princenton University Press
,
1986
), Chap. 14, pp.
291
308
.
18.
G.
Haller
, “
Finding finite-time invariant manifolds in two-dimensional velocity fields
,”
Chaos
10
,
99
108
(
2000
).
19.
G.
Haller
, “
Distinguished material surfaces and coherent structures in three-dimensional fluid flows
,”
Physica D
149
,
248
277
(
2001
).
20.
G.
Haller
, “
Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence
,”
Phys. Fluids
13
,
3365
3386
(
2001
).
21.
G.
Haller
, “
Lagrangian coherent structures from approximate velocity data
,”
Phys. Fluids
14
,
1851
1861
(
2002
).
22.
G.
Haller
, “
A variational theory of hyperbolic Lagrangian coherent structures
,”
Physica D
240
,
574
598
(
2011
).
23.
G.
Haller
and
T.
Sapsis
, “
Lagrangian coherent structures and the smallest finite-time Lyapunov exponent
,”
Chaos
21
,
023115
(
2011
).
24.
G.
Haller
and
G.
Yuan
, “
Lagrangian coherent structures and mixing in two-dimensional turbulence
,”
Physica D
147
,
352
370
(
2000
).
25.
B.
Hasselblatt
and
Y.
Pesin
, “
Pesin entropy formula
,”
Scholarpedia
3
,
3733
(
2008
).
26.
K.
Kaneko
and
I.
Tsuda
,
Complex Systems: Chaos and Beyond, A Constructive Approach with Applications in Life Sciences
, 1st ed. (
Springer
,
Berlin
,
2000
).
27.
K.
Kaneko
and
I.
Tsuda
, “
Chaotic itinerancy
,”
Chaos
13
,
926
936
(
2003
).
28.
T.
Kapitaniak
,
L. O.
Chua
, and
G. Q.
Zhong
, “
Experimental hyperchaos in coupled chua's circuits
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
41
,
499
503
(
1994
).
29.
F.
Lekien
,
S. C.
Shadden
, and
J. E.
Marsden
, “
Lagrangian coherent structures in n-dimensional systems
,”
J. Math. Phys.
48
,
065404
(
2007
).
30.
D.
Lipinski
and
K.
Mohseni
, “
A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures
,”
Chaos
20
,
017504
(
2010
).
31.
J.
and
G.
Chen
, “
Generating multiscroll chaotic attractors: Theories, methods and applications
,”
Int. J. Bifurcation Chaos
16
,
775
858
(
2006
).
32.
J.
,
G.
Chen
,
X.
Yu
, and
H.
Leung
, “
Design and analysis of multiscroll chaotic attractors from saturated function series
,”
IEEE Trans. Circuits Syst., I: Regul. Pap.
51
,
2476
2490
(
2004
).
33.
J.
,
S.
Yu
,
H.
Leung
, and
G.
Chen
, “
Experimental verification of multidirectional multiscroll chaotic attractors
,”
IEEE Trans. Circuits Syst. I: Regul. Pap.
53
,
149
165
(
2006
).
34.
T.
Matsumoto
,
L. O.
Chua
, and
M.
Komuro
, “
The double scroll
,”
IEEE Trans. Circuits Syst.
32
(
8
),
797
818
(
1985
).
35.
M.
Mitchell
,
Complexity: A Guide Tour
(
Oxford University Press
,
2009
).
36.
L. H. A.
Monteiro
,
Sistemas Dinâmicos
, 2nd ed. (
Mack Pesquisa
,
São Paulo
,
2006
) (in Portuguese).
37.
P. C.
Müller
, “
Calculation of Lyapunov exponents for dynamic systems with discontinuities
,”
Chaos, Solitons Fractals
5
,
1671
1681
(
1995
).
38.
T. S.
Parker
and
L. O.
Chua
,
Practical Numerical Algorithms for Chaotic Systems
(
Springer-Verlag
,
1989
).
39.
T.
Peacock
and
J.
Dabiri
, “
Introduction to focus issue: Lagrangian coherent structures
,”
Chaos
20
,
017501
(
2010
).
40.
M.
Rabinovich
and
H.
Abarbanel
, “
The role of chaos in neural systems
,”
Neuroscience
87
,
5
14
(
1998
).
41.
F.
Sadlo
and
R.
Peikert
, “
Visualizing Lagrangian coherent structures and comparison to vector field topology
,” in
Topology-Based Methods in Visualization II
, Mathematics and Visualization, edited by
H.-C.
Hege
,
K.
Polthier
, and
G.
Scheuermann
(
Springer
,
Berlin
,
2009
), Chap. 2, pp.
15
29
.
42.
M.
Sano
and
Y.
Sawada
, “
Measurement of the Lyapunov spectrum from a chaotic time series
,”
Phys. Rev. Lett.
55
,
1082
1085
(
1985
).
43.
S. C.
Shadden
,
F.
Lekien
, and
J. E.
Marsden
, “
Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows
,”
Physica D
212
,
271
304
(
2005
).
44.
I.
Shimada
and
T.
Nagashima
, “
A numerical approach to ergodic problem of dissipative dynamical systems
,”
Prog. Theor. Phys.
61
,
1605
1616
(
1979
).
45.
C. P.
Silva
, “
Shil'nikov's theorem—a tutorial
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
40
,
675
682
(
1993
).
46.
C. A.
Skarda
and
W.
Freeman
, “
How brains make chaos in order to make sense of the world
,”
Behav. Brain Sci.
10
,
161
173
(
1987
).
47.
D. C.
Soriano
,
R.
Attux
,
R.
Suyama
, and
J. M. T.
Romano
, “
Searching for specific periodic and chaotic oscillations in a periodically excited Hodgkin-Huxley model
,”
Int. J. Bifurcation Chaos
22
,
1230006
(
2012
).
48.
D. C.
Soriano
,
F. I.
Fazanaro
,
R.
Suyama
,
J. R.
de Oliveira
,
R.
Attux
, and
M. K.
Madrid
, “
A method for Lyapunov spectrum estimation using cloned dynamics and its application to the discontinuously excited Fitzhugh-Nagumo model
,”
Nonlinear Dyn.
67
,
413
424
(
2012
).
49.
J. A. K.
Suykens
and
J.
Vanderwalle
, “
Generation of n-double scroll (n = 1,2,3,4,…)
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
40
,
861
867
(
1993
).
50.
A.
Wolf
,
J. B.
Swift
,
H. L.
Swinney
, and
J. A.
Vastano
, “
Determining Lyapunov exponents from a time series
,”
Physica D
16
,
285
317
(
1985
).
51.
M. E.
Yalçin
,
J. A. K.
Suykens
,
J.
Vanderwalle
, and
S.
Ozoguz
, “
Families of scroll grid attractors
,”
Int. J. Bifurcation Chaos
12
,
23
41
(
2002
).
52.
I.
Zelinka
,
S.
Celikovsky
,
H.
Richter
, and
G.
Chen
,
Evolutionary Algorithms and Chaotic Systems (Studies in Computational Intelligence)
, 1st ed. (
Springer
,
Berlin
,
2010
).
You do not currently have access to this content.