In this paper, a novel kind of compound synchronization among four chaotic systems is investigated, where the drive systems have been conceptually divided into two categories: scaling drive systems and base drive systems. Firstly, a sufficient condition is obtained to ensure compound synchronization among four memristor chaotic oscillator systems based on the adaptive technique. Secondly, a secure communication scheme via adaptive compound synchronization of four memristor chaotic oscillator systems is presented. The corresponding theoretical proofs and numerical simulations are given to demonstrate the validity and feasibility of the proposed control technique. The unpredictability of scaling drive systems can additionally enhance the security of communication. The transmitted signals can be split into several parts loaded in the drive systems to improve the reliability of communication.

1.
L. M.
Pecora
and
T. L.
Carroll
,
Phys. Rev. Lett.
64
,
821
(
1990
).
2.
H. G.
Zhang
,
W.
Huang
,
Z. L.
Wang
, and
T. Y.
Chai
,
Phys. Lett. A
350
,
363
(
2006
).
3.
H. G.
Zhang
,
Y. H.
Xie
,
Z. L.
Wang
, and
C. D.
Zheng
,
IEEE Trans. Neural Netw.
18
,
1841
(
2007
).
4.
I.
Grosu
,
E.
Padmanaban
,
P. K.
Roy
, and
S. K.
Dana
,
Phys. Rev. Lett.
100
,
0234102
, (
2008
).
5.
G.
Fu
and
Z.
Li
,
Nonlinear Sci. Numer. Simul.
16
,
395
(
2011
).
6.
W.
He
and
J. D.
Cao
,
Chaos
19
,
013118
(
2009
).
7.
A. A.
Koronovskii
,
O. I.
Moskalenko
, and
A. E.
Hramov
,
Tech. Phys. Lett.
32
,
113
(
2006
).
8.
A. A.
Koronovskii
,
O. I.
Moskalenko
, and
A. E.
Hramov
,
Tech. Phys.
55
,
435
(
2010
).
9.
P. K.
Roy
,
C.
Hens
,
I.
Grosu
, and
S. K.
Dana
,
Chaos
21
,
013106
(
2011
).
10.
M. G.
Rosenblum
,
A. S.
Pikovsky
, and
J.
Kurths
,
Phys. Rev. Lett.
76
,
1804
(
1996
).
11.
M. C.
Ho
,
Y. C.
Hung
, and
C. H.
Chou
,
Phys. Lett. A
296
,
43
(
2002
).
12.
S. K.
Bhowmick
,
P.
Pal
,
P. K.
Roy
, and
S. K.
Dana
,
Chaos
22
,
023151
(
2012
).
13.
H. G.
Zhang
,
T. D.
Ma
,
G. B.
Huang
, and
Z. L.
Wang
,
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
40
,
831
(
2010
).
14.
Z.
Ge
and
Y.
Chen
,
Chaos, Solitons Fractals
21
,
101
(
2004
).
15.
R.
Mainieri
and
J.
Rehacek
,
Phys. Rev. Lett.
82
,
3042
(
1999
).
16.
17.
J.
Sun
,
Y.
Shen
, and
G.
Zhang
,
Chaos
22
,
043107
(
2012
).
18.
A. E.
Hramov
and
A. A.
Koronovskii
,
Physica D
206
,
252
(
2005
).
19.
R.
Luo
,
Y.
Wang
, and
S.
Deng
,
Chaos
21
,
043114
(
2011
).
20.
J.
Sun
,
Y.
Shen
,
G.
Zhang
,
C.
Xu
, and
G.
Cui
,
Nonlinear Dyn.
1
12
(
2012
).
21.
L. O.
Chua
,
IEEE Trans. Circuit Theory
18
,
507
(
1971
).
22.
L. O.
Chua
and
S. M.
Kang
,
Proc. IEEE
64
,
209
(
1976
).
23.
F.
Zhang
and
J.
Heidel
,
Nonlinearity
10
,
1289
(
1997
).
24.
M.
Itoh
and
L. O.
Chua
,
Int. J. Bifurcation Chaos
18
,
3183
(
2008
).
25.
B.
Muthuswamy
and
P. P.
Kokate
,
IETE Tech. Rev.
26
,
417
(
2009
).
26.
B.
Muthuswamy
and
L. O.
Chua
,
Int. J. Bifurcation Chaos
20
,
1567
(
2010
).
27.
B.
Muthuswamy
,
Int. J. Bifurcation Chaos
20
,
1335
(
2010
).
28.
B.
Bao
,
Z.
Liu
, and
J.
Xu
,
Chin. Phys. B
19
,
030510
(
2010
).
29.
S.
Wen
,
Z.
Zeng
, and
T.
Huang
,
Phys. Lett. A
376
,
2775
(
2012
).
30.
Z. H.
Lin
and
H. X.
Wang
,
IETE Tech. Rev.
27
,
318
(
2010
).
You do not currently have access to this content.