In this paper, the nonautonomous Lenells-Fokas (LF) model is studied with the bilinear method and symbolic computation. Such analytical solutions of the nonautonomous LF model as one-soliton, two-soliton, and earthwormons are derived. Nonautonomous characteristics are then symbolically and graphically investigated, and it is finally found that the soliton velocity is time-dependent, and there exist soliton accelerating and decelerating motions. Further, two necessary conditions for the occurrence of earthwormon acceleration and deceleration (and their alternation) are pointed out.

1.
A.
Kundu
,
J. Math. Phys.
51
,
022901
(
2010
).
2.
J. F.
Guo
,
S. K.
Wang
,
K.
Wu
,
Z. W.
Yan
, and
W. Z.
Zhao
,
J. Math. Phys.
50
,
113502
(
2009
).
3.
Zhaqilao
and
Sirendaoreji
,
J. Math. Phys.
51
,
073501
(
2010
).
4.
A.
Karasu-Kalkanll
,
A.
Karasu
,
A.
Sakovich
,
S.
Sakovich
, and
R.
Turhan
,
J. Math. Phys.
49
,
073516
(
2008
).
6.
A.
Kundu
,
J. Math. Phys.
50
,
102702
(
2009
).
7.
R. G.
Zhou
,
J. Math. Phys.
50
,
123502
(
2009
).
8.
X.
and
B.
Tian
,
Europhys. Lett.
97
,
10005
(
2012
).
9.
11.
J.
Lenells
and
A. S.
Fokas
,
Nonlinearity
22
,
11
(
2009
).
12.
13.
J.
Lenells
,
J. Nonlinear Sci.
20
,
709
(
2010
).
14.
D. S.
Wang
,
S. W.
Song
,
B.
Xiong
, and
W. M.
Liu
,
Phys. Rev. A
84
,
053607
(
2011
).
15.
X.
,
B.
Tian
,
H. Q.
Zhang
,
T.
Xu
, and
H.
Li
,
Chaos
20
,
043125
(
2010
).
16.
D. S.
Wang
,
Nonlinear Analysis: TMA
73
,
270
(
2010
).
17.
X.
,
H. W.
Zhu
,
X. H.
Meng
,
Z. C.
Yang
, and
B.
Tian
,
J. Math. Anal. Appl.
336
,
1305
(
2007
);
X.
and
M.
Peng
,
Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications
,
Nonlinear Dyn.
DOI: ;
X.
,
H. W.
Zhu
,
Z. Z.
Yao
,
X. H.
Meng
,
C.
Zhang
,
C. Y.
Zhang
, and
B.
Tian
,
Ann. Phys. (N. Y.)
323
,
1947
(
2008
);
X.
,
B.
Tian
,
T.
Xu
,
K. J.
Cai
, and
W. J.
Liu
,
Ann. Phys. (N. Y.)
323
,
2554
(
2008
);
X.
,
J.
Li
,
H. Q.
Zhang
,
T.
Xu
,
L. L.
Li
and
B.
Tian
,
J. Math. Phys.
51
,
043511
(
2010
);
X.
and
B.
Tian
,
Phys. Rev. E
85
,
026117
(
2012
);
X.
and
M.
Peng
,
Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics
,
Commun. Nonlinear Sci. Numer. Simul.
DOI: .
18.
R.
Hirota
,
The Direct Method in Soliton Theory
(
Cambridge University Press
,
Cambridge
,
2004
).
19.
R.
Hirota
,
J. Math. Phys.
14
,
805
(
1973
).
You do not currently have access to this content.