In this paper, the nonautonomous Lenells-Fokas (LF) model is studied with the bilinear method and symbolic computation. Such analytical solutions of the nonautonomous LF model as one-soliton, two-soliton, and earthwormons are derived. Nonautonomous characteristics are then symbolically and graphically investigated, and it is finally found that the soliton velocity is time-dependent, and there exist soliton accelerating and decelerating motions. Further, two necessary conditions for the occurrence of earthwormon acceleration and deceleration (and their alternation) are pointed out.
REFERENCES
1.
A.
Kundu
, J. Math. Phys.
51
, 022901
(2010
).2.
J. F.
Guo
, S. K.
Wang
, K.
Wu
, Z. W.
Yan
, and W. Z.
Zhao
, J. Math. Phys.
50
, 113502
(2009
).3.
Zhaqilao
and Sirendaoreji
, J. Math. Phys.
51
, 073501
(2010
).4.
A.
Karasu-Kalkanll
, A.
Karasu
, A.
Sakovich
, S.
Sakovich
, and R.
Turhan
, J. Math. Phys.
49
, 073516
(2008
).5.
A.
Kundu
, J. Phys. A
41
, 495201
(2008
).6.
A.
Kundu
, J. Math. Phys.
50
, 102702
(2009
).7.
R. G.
Zhou
, J. Math. Phys.
50
, 123502
(2009
).8.
X.
Lü
and B.
Tian
, Europhys. Lett.
97
, 10005
(2012
).9.
J.
Lenells
, Stud. Appl. Math.
123
, 215
(2009
).10.
A. S.
Fokas
, Physica D
87
, 145
(1995
).11.
J.
Lenells
and A. S.
Fokas
, Nonlinearity
22
, 11
(2009
).12.
O. C.
Wright
, Nonlinearity
22
, 2633
(2009
).13.
J.
Lenells
, J. Nonlinear Sci.
20
, 709
(2010
).14.
D. S.
Wang
, S. W.
Song
, B.
Xiong
, and W. M.
Liu
, Phys. Rev. A
84
, 053607
(2011
).15.
X.
Lü
, B.
Tian
, H. Q.
Zhang
, T.
Xu
, and H.
Li
, Chaos
20
, 043125
(2010
).16.
D. S.
Wang
, Nonlinear Analysis: TMA
73
, 270
(2010
).17.
X.
Lü
, H. W.
Zhu
, X. H.
Meng
, Z. C.
Yang
, and B.
Tian
, J. Math. Anal. Appl.
336
, 1305
(2007
);X.
Lü
and M.
Peng
, Painlevé-integrability and explicit solutions of the general two-coupled nonlinear Schrödinger system in the optical fiber communications
, Nonlinear Dyn.
DOI: ;X.
Lü
, H. W.
Zhu
, Z. Z.
Yao
, X. H.
Meng
, C.
Zhang
, C. Y.
Zhang
, and B.
Tian
, Ann. Phys. (N. Y.)
323
, 1947
(2008
);X.
Lü
, B.
Tian
, T.
Xu
, K. J.
Cai
, and W. J.
Liu
, Ann. Phys. (N. Y.)
323
, 2554
(2008
);X.
Lü
, J.
Li
, H. Q.
Zhang
, T.
Xu
, L. L.
Li
and B.
Tian
, J. Math. Phys.
51
, 043511
(2010
);X.
Lü
and B.
Tian
, Phys. Rev. E
85
, 026117
(2012
);X.
Lü
and M.
Peng
, Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics
, Commun. Nonlinear Sci. Numer. Simul.
DOI: .18.
R.
Hirota
, The Direct Method in Soliton Theory
(Cambridge University Press
, Cambridge
, 2004
).19.
R.
Hirota
, J. Math. Phys.
14
, 805
(1973
).© 2013 American Institute of Physics.
2013
American Institute of Physics
You do not currently have access to this content.