We present an efficient particle filtering algorithm for multiscale systems, which is adapted for simple atmospheric dynamics models that are inherently chaotic. Particle filters represent the posterior conditional distribution of the state variables by a collection of particles, which evolves and adapts recursively as new information becomes available. The difference between the estimated state and the true state of the system constitutes the error in specifying or forecasting the state, which is amplified in chaotic systems that have a number of positive Lyapunov exponents. In this paper, we propose a reduced-order particle filtering algorithm based on the homogenized multiscale filtering framework developed in Imkeller et al. “Dimensional reduction in nonlinear filtering: A homogenization approach,” Ann. Appl. Probab. (to be published). In order to adapt the proposed algorithm to chaotic signals, importance sampling and control theoretic methods are employed for the construction of the proposal density for the particle filter. Finally, we apply the general homogenized particle filtering algorithm developed here to the Lorenz'96 [E. N. Lorenz, “Predictability: A problem partly solved,” in Predictability of Weather and Climate, ECMWF, 2006 (ECMWF, 2006), pp. 40–58] atmospheric model that mimics mid-latitude atmospheric dynamics with microscopic convective processes.

1.
P.
Imkeller
,
N. S.
Namachchivaya
,
N.
Perkowski
, and
H.
Yeong
, “Dimensional reduction in nonlinear filtering: A homogenization approach,” Ann. Appl. Probab. (to be published).
2.
E. N.
Lorenz
, “
Predictability: A problem partly solved
,” in
Predictability of Weather and Climate, ECMWF, 2006
(
ECMWF
,
2006
), pp.
40
58
.
3.
C.
Snyder
,
T.
Bengtsson
,
P.
Bickel
, and
J.
Anderson
, “
Obstacles to high-dimensional particle filtering
,”
Mon. Weather Rev.
136
,
4629
4640
(
2008
).
4.
F.
Daum
and
J.
Huang
, “
Curse of dimensionality and particle filters
,” in
Proceedings of IEEE Aerospace Conference, 2003
(
IEEE
,
2003
), Vol.
4
, pp.
1979
1993
.
5.
E.
Vanden-Eijnden
, “
Numerical techniques for multi-scale dynamical systems with stochastic effects
,”
Commun. Math. Sci.
1
,
385
391
(
2003
).
6.
W. E. D.
Liu
and
E.
Vanden-Eijnden
, “
Analysis of multiscale methods for stochastic differential equations
,”
Commun. Pure Appl. Math.
58
,
1544
1585
(
2005
).
7.
J.
Park
,
R. B.
Sowers
, and
N. S.
Namachchivaya
, “
Dimensional reduction in nonlinear filtering
,”
Nonlinearity
23
,
305
324
(
2010
).
8.
J.
Park
,
N. S.
Namachchivaya
, and
H. C.
Yeong
, “
Particle filters in a multiscale environment: Homogenized hybrid particle filter
,”
J. Appl. Mech.
78
,
061001
(
2011
).
9.
D.
Crisan
, “
Particle filters in a continuous time framework
,” in
Nonlinear Statistical Signal Processing Workshop, 2006
(
IEEE
,
2006
), Vol.
11
, pp.
73
78
.
10.
H. J.
Kushner
, “
Nonlinear filtering: The exact dynamical equations satisfied by the conditional mode
,”
IEEE Trans. Autom. Control
AC-12
,
262
267
(
1967
).
11.
A.
Bain
and
D.
Crisan
,
Fundamentals of Stochastic Filtering
(
Springer-Verlag
,
2009
).
12.
M.
Zakai
, “
On the optimal filtering of diffusion processes
,”
Z. Wahrscheinlichkeitstheorie verw. Geb.
11
,
230
243
(
1969
).
13.
A. J.
Majda
,
I.
Timofeyev
, and
E.
Vanden-Eijnden
, “
A mathematical framework for stochastic climate models
,”
Commun. Pure Appl. Math.
54
(
8
),
891
974
(
2001
).
14.
A. J.
Majda
,
I.
Timofeyev
, and
E.
Vanden-Eijnden
, “
Systematic strategies for stochastic mode reduction in climate
,”
J. Atmos. Sci.
60
,
1705
1722
(
2003
).
15.
D. S.
Wilks
, “
Effects of stochastic parametrizations in the Lorenz'96 model
,”
Q. J. R. Meteorol. Soc.
131
,
389
407
(
2005
).
16.
E.
Lorenz
and
K.
Emanuel
, “
Optimal sites for supplementary weather observations: Simulation with a small model
,”
J. Atmos. Sci.
55
,
399
414
(
1998
).
17.
S.
Herrera
,
D.
Paz
,
J.
Fernandez
, and
M. A.
Rodriguez
, “
The role of large-scale spatial patterns in the chaotic amplification of perturbations in a Lorenz'96 model
,”
Tellus
63
,
978
990
(
2011
).
18.
J.
Harlim
and
A. J.
Majda
, “
Filtering nonlinear dynamical systems with linear stochastic models
,”
Nonlinearity
21
,
1281
1306
(
2008
).
19.
E. L.
Kang
and
J.
Harlim
, “
Filtering partially observed multiscale systems with heterogeneous multiscale methods-based reduced climate models
,”
Mon. Weather Rev.
140
,
860
873
(
2012
).
20.
R. Z.
Khas'minskii
, “
A limit theorem for the solutions of differential equations with random right-hand sides
,”
Theory Probab. Appl.
11
,
390
406
(
1966
).
21.
K.
Hasselmann
, “
Stochastic climate models: Part I. Theory
,”
Tellus
28
,
473
485
(
1976
).
22.
Y.
Kifer
, “
L2 diffusion approximation for slow motion in averaging
,”
Stochastics Dyn.
3
,
213
246
(
2003
).
23.
P. E.
Kloeden
and
E.
Platen
,
Numerical Solution of Stochastic Differential Equations
(
Springer-Verlag
,
Berlin, Heidelberg
,
1992
).
24.
I.
Fatkullin
and
E.
Vanden-Eijnden
, “
A computational strategy for multiscale systems
,”
J. Comput. Phys.
200
,
605
638
(
2004
).
25.
M. S.
Arulampalam
,
S.
Maskell
,
N.
Gordon
, and
T.
Clapp
, “
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
,”
IEEE Trans. Signal Process.
50
,
174
188
(
2002
).
26.
N. J.
Gordon
,
D. J.
Salmond
, and
A. F. M.
Smith
, “
Novel approach to nonlinear/non-Gaussian Bayesian state estimation
,” in
IEEE Proceedings-F
,
1993
, Vol. 120, pp.
107
113
.
27.
P. J.
van Leeuwen
, “
Nonlinear data assimilation in geosciences: An extremely efficient particle filter
,”
Q. J. R. Meteorol. Soc.
136
,
1991
1999
(
2010
).
28.
A. E.
Bryson
, Jr.
and
Y.-C.
Ho
,
Applied Optimal Control: Optimization, Estimation, and Control
(
Taylor & Francis
,
New York
,
1975
).
29.
E.
Kalnay
,
Atmospheric Modeling, Data Assimilation and Predictability
(
Cambridge University Press
,
2003
).
30.
A.
Chorin
,
M.
Morzfeld
, and
X.
Tu
, “
Implicit particle filters for data assimilation
,”
Commun. Appl. Math. Comput. Sci.
5
,
221
240
(
2010
).
31.
A.
Doucet
, “On sequential simulation-based methods for Bayesian filtering,” Technical Report (Cambridge University, 1998).
32.
A.
Kong
,
J. S.
Liu
, and
W. H.
Wong
, “
Sequential imputations and Bayesian missing data problems
,”
J. Am. Stat. Assoc.
89
,
278
288
(
1994
).
33.
G.
Evensen
and
P. J.
van Leeuwen
, “
Assimilation of geosat altimeter data for the Agulhas current using the ensemble Kalman filter with a quasigeostrophic model
,”
Mon. Weather Rev.
124
,
85
96
(
1996
).
34.
T. N.
Palmer
,
R.
Gelaro
,
J.
Barkmeijer
, and
R.
Buizza
, “
Singular vectors, metrics, and adaptive observations
,”
J. Atmos. Sci.
55
,
633
653
(
1998
).
35.
N.
Lingala
,
N. S.
Namachchivaya
,
N.
Perkowski
, and
H.
Yeong
, “
Optimal nudging in particle filters
,”
Proceedings of the IUTAM Symposium on Multiscale Problems in Stochastic Mechanics 2012
, Karlsruhe, Germany 25 June–29 June
2012
(to appear).
36.
E.
Pardoux
, “
Stochastic partial differential equations and filtering of diffusion processes
,”
Stochastics
3
,
127
167
(
1979
).
37.
E.
Pardoux
and
A. Y.
Veretennikov
, “
On Poisson equation and diffusion approximation 2
,”
Ann. Probab.
31
,
1166
1192
(
2003
).
You do not currently have access to this content.