We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

1.
Z.
Arai
,
M.
Gameiro
,
T.
Gedeon
,
H.
Kokubu
,
K.
Mischaikow
, and
H.
Oka
, “
Graph-based topological approximation of saddle-node bifurcation in maps
,”
RIMS Kokyuroku Bessatsu
B
31
,
225
241
(
2012
).
2.
Z.
Arai
,
W.
Kalies
,
H.
Kokubu
,
K.
Mischaikow
,
H.
Oka
, and
P.
Pilarczyk
, “
A database schema for the analysis of global dynamics of multiparameter systems
,”
SIAM J. Appl. Dyn. Syst.
8
,
757
789
(
2009
).
3.
C.
Conley
, “
Isolated invariant sets and the Morse index
”, in
CMBS Regional Conference Series in Mathematics
(
American Mathematical Society
,
1978
), Vol.
38
.
4.
T.
Cormen
,
C.
Leiserson
, and
R.
Rivest
,
Introduction to Algorithms
, The MIT Electrical Engineering and Computer Science Series (
MIT
,
Cambridge, MA
,
1990
).
5.
S.
Day
,
O.
Junge
, and
K.
Mischaikow
, “
A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems
,”
SIAM J. Appl. Dyn. Syst.
3
,
117
160
(
2004
).
6.
S.
Day
,
Y.
Hiraoka
,
K.
Mischaikow
, and
T.
Ogawa
, “
Rigorous numerics for global dynamics: A study of the Swift-Hohenberg equation
,”
SIAM J. Appl. Dyn. Syst.
4
,
1
31
(
2005
).
7.
D. S.
Dummit
and
R.M.
Foote
,
Abstract Algebra
, 3rd ed. (
Wiley
,
2004
).
8.
J.
Franks
and
D.
Richeson
, “
Shift equivalence and the Conley index
,”
Trans. Am. Math. Soc.
352
,
3305
3322
(
2000
).
9.
M.
Gameiro
,
T.
Gedeon
,
W. D.
Kalies
,
H.
Kokubu
,
K.
Mischaikow
, and
H.
Oka
, “
Topological horseshoes of traveling waves for a fast-slow predator-prey system
,”
J. Dyn. Differ. Equ.
19
,
623
654
(
2007
).
10.
S.
Harker
and
K.
Mischaikow
, ”Topological sort for graphs with large numbers of edges” (in preparation).
11.
S.
Harker
,
K.
Mischaikow
,
M.
Mrozek
, and
V.
Nanda
, “Discrete Morse theoretic algorithms for computing homology of complexes and maps,” Foundations of Computational Mathematics (accepted).
12.
A.
Hatcher
,
Algebraic Topology
(
Cambridge University Press
,
2002
).
13.
V.
Hutson
and
K.
Schmitt
, “
Permanence and the dynamics of biological systems
,”
Math. Biosci.
111
,
1
71
(
1992
).
14.
T.
Kaczynski
,
K.
Mischaikow
, and
M.
Mrozek
,
Computational homology
, in Applied Mathematical Sciences (
Springer-Verlag
,
New York
,
2004
), vol.
157
.
15.
W. D.
Kalies
,
K.
Mischaikow
, and
R. C. A. M.
Vandervorst
, “
An algorithmic approach to chain recurrence
,”
Found. Comput. Math.
5
,
409
449
(
2005
).
16.
K.
Kaneko
, “
Overview of coupled map lattices
,”
Chaos
2
,
279
282
(
1992
).
17.
K.
Kaneko
, “
Clustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements
,”
Physica D
41
,
137
172
(
1990
).
18.
K.
Kamiyama
,
M.
Komuro
, and
T.
Endo
, “
Bifurcation of quasi-periodic oscillations in mutually coupled hard-type oscillators—Demonstration of unstable quasi-periodic orbits
,”
Int. J. Bifurcation Chaos
22
,
1230022
(
2012
).
19.
K.
Mischaikow
,
M.
Mrozek
,
J.
Reiss
, and
A.
Szymczak
, “
Construction of symbolic dynamics from experimental time series
,”
Phys. Rev. Lett.
82
,
1144
1147
(
1999
).
20.
K.
Mischaikow
and
M.
Mrozek
, “
Conley index
,” in
Handbook of Dynamical Systems
(
North-Holland
,
Amsterdam
,
2002
), vol.
2
, pp.
393
460
.
21.
K.
Mischaikow
and
M.
Mrozek
, “
Chaos in the Lorenz equations: A computer-assisted proof
,”
Bull. Amer. Math. Soc.
32
,
66
72
(
1995
).
22.
K.
Mischaikow
,
M.
Mrozek
, and
P.
Pilarczyk
, “
Graph approach to the computation of the homology of continuous maps
,”
Found. Comput. Math.
5
,
199
229
(
2005
).
23.
M.
Mrozek
, “
Leray Functor and the cohomological Conley index for discrete time dynamical systems
,”
Trans. Am. Math. Soc.
318
,
149
178
(
1990
).
24.
M.
Mrozek
, “
An algorithm approach to the Conley index theory
,”
J. Dynam. Differ. Equ.
11
,
711
734
(
1999
).
25.
J.
Munkres
,
Topology
, 2nd ed. (
Prentice Hall
,
2000
).
26.
J. W.
Robbin
and
D.
Salamon
, “
Dynamical systems, shape theory and the Conley index
,”
Ergod. Theory Dyn. Syst.
8
,
375
393
(
1988
).
27.
S.
Rump
,
”Verification methods: rigorous results using floating-point arithmetic,”
Acta Numerica
19
,
287
449
(
2010
).
28.
R. E.
Tarjan
and
J.
van Leeuwen
,”
Worst-case analysis of set union algorithms
,”
J. ACM
31
(
2
),
245
281
(
1984
).
29.
W.
Tucker
,
Validated Numerics: A Short Introduction to Rigorous Computations
(
Princeton University Press
,
2011
).
30.
I.
Ugarcovici
and
H.
Weiss
, “
Chaotic dynamics of a nonlinear density dependent population model
,”
Nonlinearity
17
,
1689
1711
(
2004
).
31.
M.
Komuro
, personal communication
2011
.
You do not currently have access to this content.