We track the secondary bifurcations of coherent states in plane Couette flow and show that they undergo a periodic doubling cascade that ends with a crisis bifurcation. We introduce a symbolic dynamics for the orbits and show that the ones that exist fall into the universal sequence described by Metropolis, Stein and Stein for unimodal maps. The periodic orbits cover much of the turbulent dynamics in that their temporal evolution overlaps with turbulent motions when projected onto a plane spanned by energy production and dissipation.

1.
J.
Eckmann
, “
Roads to turbulence in dissipative dynamical systems
,”
Rev. Mod. Phys.
53
,
643
654
(
1981
).
2.
E.
Ott
, “
Strange attractors and chaotic motions of dynamical systems
,”
Rev. Mod. Phys.
53
,
655
671
(
1981
).
3.
B.
Eckhardt
,
T. M.
Schneider
,
B.
Hof
, and
J.
Westerweel
, “
Turbulence transition in pipe flow
,”
Annu. Rev. Fluid Mech.
39
,
447
468
(
2007
).
4.
B.
Eckhardt
, “
Turbulence transition in pipe flow: Some open questions
,”
Nonlinearity
21
,
T1
(
2008
).
5.
M. C.
Gutzwiller
, “
Periodic orbits and classical quantization conditions
,”
J. Math. Phys.
12
(
3
),
343
(
1971
).
6.
M. C.
Gutzwiller
,
Chaos in classical and quantum mechanics
(
Springer
,
NY
,
1990
).
7.
P.
Cvitanović
and
B.
Eckhardt
, “
Periodic orbit expansions for classical smooth flows
,”
J. Phys. A
24
,
L237
(
1991
).
8.
C. D.
Andereck
,
S. S.
Liu
, and
H. L.
Swinney
, “
Flow regimes in a circular Couette system with independently rotating cylinders
,”
J. Fluid Mech.
164
,
155
183
(
1986
).
9.
E. L.
Koschmieder
,
Bénard Cells and Taylor Vortices, Cambridge Monographs on Mechanics and Applied Mathematics
(
Cambridge University Press
,
1993
).
10.
J.
Maurer
and
A.
Libchaber
, “
Rayleigh-Bénard experiment in liquid helium; frequency locking and the onset of turbulence
,”
J. Phys. Lett.
40
,
419
423
(
1979
).
11.
J.
Stavans
,
F.
Heslot
, and
A.
Libchaber
, “
Fixed winding number and the quasiperiodic route to chaos in a convective fluid
,”
Phys. Rev. Lett.
55
,
596
599
(
1985
).
12.
F. H.
Busse
, “
Non-linear properties of thermal convection
,”
Rep. Prog. Phys.
41
,
1929
(
1978
).
13.
M. C.
Cross
and
P. C.
Hohenberg
, “
Pattern formation outside of equilibrium
,”
Rev. Mod. Phys.
65
,
851
1112
(
1993
).
14.
M.
Nagata
, “
Three-dimensional finite-amplitude solutions in plane Couette flow: Bifurcation from infinity
,”
J. Fluid Mech.
217
,
519
527
(
1990
).
15.
H. K.
Moffatt
, “
Fixed points of Turbulent Dynamical Systems and Suppression of Nonlinearity
,” in
Whither Turbulence? Turbulence at the Crossroads
, edited by
J. L.
Lumley
, Lecture Notes in Physics (
Springer
,
1990
) Vol. 357, pp.
250
257
.
16.
J.
Jiménez
and
P.
Moin
, “
The minimal flow unit in near-wall turbulence
,”
J. Fluid Mech.
225
,
213
240
(
1991
).
17.
J. M.
Hamilton
,
J.
Kim
, and
F.
Waleffe
, “
Regeneration mechanisms of near-wall turbulence structures
,”
J. Fluid Mech.
287
,
317
348
(
1995
).
18.
F.
Waleffe
, “
Hydrodynamic stability and turbulence: Beyond transients to a self-sustaining process
,”
Stud. Appl. Math.
95
,
319
343
(
1995
).
19.
W.
Schoppa
and
F.
Hussain
, “
Coherent structure generation in near-wall turbulence
,”
J. Fluid Mech.
453
,
57
108
(
2002
).
20.
M.
Lagha
and
P.
Manneville
, “
Modeling transitional plane Couette flow
,”
Eur. Phys. J. B.
58
,
433
447
(Springer,
2007
).
21.
N.
Aubry
,
P.
Holmes
,
J. L.
Lumley
, and
E.
Stone
, “
The dynamics of coherent structures in the wall region of a turbulent boundary layer
,”
J. Fluid Mech.
192
,
115
173
(
1988
).
22.
T. R.
Smith
,
J.
Moehlis
, and
P.
Holmes
, “
Heteroclinic cycles and periodic orbits for the O(2)-equivariant 0:1:2 mode interaction
,”
Physica D
211
,
347
376
(
2005
).
23.
H.
Faisst
and
B.
Eckhardt
, “
Transition from the Couette-Taylor system to the plane Couette system
,”
Phys. Rev. E
61
,
7227
7230
(
2000
).
24.
H.
Faisst
and
B.
Eckhardt
, “
Traveling waves in pipe flow
,”
Phys. Rev. Lett.
91
,
224502
(
2003
).
25.
B.
Hof
,
C. W. H.
van Doorne
,
J.
Westerweel
,
F. T. M.
Nieuwstadt
,
H.
Faisst
,
B.
Eckhardt
,
H.
Wedin
,
R. R.
Kerswell
, and
F.
Waleffe
, “
Experimental observation of nonlinear traveling waves in turbulent pipe flow
,”
Science
305
,
1594
1598
(
2004
).
26.
T. M.
Schneider
,
B.
Eckhardt
, and
J.
Vollmer
, “
Statistical analysis of coherent structures in transitional pipe flow
,”
Phys. Rev. E
75
,
66313
(
2007
).
27.
Y. C.
Lai
and
T.
Tel
,
Transient Chaos
(
Springer
,
2011
).
28.
B.
Hof
,
J.
Westerweel
,
T. M.
Schneider
, and
B.
Eckhardt
, “
Finite lifetime of turbulence in shear flows
,”
Nature
443
,
59
62
(
2006
).
29.
T. M.
Schneider
and
B.
Eckhardt
, “
Lifetime statistics in transitional pipe flow
,”
Phys. Rev. E
78
,
46310
(
2008
).
30.
R. M.
Clever
and
F. H.
Busse
, “
Tertiary and quaternary solutions for plane Couette flow
,”
J. Fluid Mech.
344
,
137
153
(
1997
).
31.
F.
Mellibovsky
and
B.
Eckhardt
, “
Takens-Bogdanov bifurcation of travelling-wave solutions in pipe flow
,”
J. Fluid Mech.
670
,
26
(
2010
).
32.
F.
Mellibovsky
and
B.
Eckhardt
, “
From travelling waves to mild chaos: A supercritical bifurcation cascade in pipe flow
,” J. Fluid Mech. Available on CJ02012, doi:.
33.
P.
Cvitanović
, “
Invariant measurement of strange sets in terms of cycles
,”
Phys. Rev. Lett.
61
,
2729
2732
(
1988
).
34.
B.
Eckhardt
and
G.
Ott
, “
Periodic orbit analysis of the Lorenz attractor
,”
Z. Phys. B
93
,
259
266
(
1994
).
35.
F.
Christiansen
,
P.
Cvitanović
, and
V.
Putkaradze
, “
Hopf's last hope: Spatiotemporal chaos in terms of unstable recurrent patterns
,”
Nonlinearity
10
,
55
(
1997
).
36.
G.
Kawahara
and
S.
Kida
, “
Periodic motion embedded in plane Couette turbulence: Regeneration cycle and burst
,”
J. Fluid Mech.
449
,
291
300
(
2001
).
37.
D.
Viswanath
, “
Recurrent motions within plane Couette turbulence
,”
J. Fluid Mech.
580
,
339
358
(
2007
).
38.
P.
Cvitanović
and
J. F.
Gibson
, “
Geometry of the turbulence in wall-bounded shear flows: Periodic orbits
,”
Phys. Scr.
T142
,
014007
(
2010
).
39.
J. F.
Gibson
, see www.channelflow.org for “
Channelflow Website
” (
2011
).
40.
A.
Schmiegel
and
B.
Eckhardt
, “
Fractal stability border in plane Couette flow
,”
Phys. Rev. Lett.
79
,
5250
5253
(
1997
).
41.
J. F.
Gibson
,
J.
Halcrow
, and
P.
Cvitanović
, “
Visualizing the geometry of state space in plane Couette flow
,”
J. Fluid Mech.
611
,
107
130
(
2008
).
42.
P. G.
Drazin
and
W. H.
Reid
,
Hydrodynamic Stability
, 2nd ed. (
Cambridge Mathematical Library
,
2004
).
43.
N. R.
Lebovitz
, “
Shear-flow transition: The basin boundary
,”
Nonlinearity
22
,
2645
(
2009
).
44.
N. R.
Lebovitz
, “
Boundary collapse in models of shear-flow transition
,”
Commun. Nonlinear Sci. Numer. Simul.
17
,
2095
2100
(
2012
).
45.
J.
Wang
,
J. F.
Gibson
, and
F.
Waleffe
, “
Lower branch coherent states in shear flows: Transition and control
,”
Phys. Rev. Lett.
98
,
204501
(
2007
).
46.
L.
van Veen
and
G.
Kawahara
, “
Homoclinic tangle on the edge of shear turbulence
,”
Phys. Rev. Lett.
107
,
114501
(
2011
).
47.
J.
Vollmer
,
T. M.
Schneider
, and
B.
Eckhardt
, “
Basin boundary, edge of chaos, and edge state in a two-dimensional model
,”
New J. Phys.
11
,
1
23
(
2009
).
48.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
, “
Crises, sudden changes in chaotic attractors, and transient chaos
,”
Physica D
7
,
181
200
(
1983
).
49.
N.
Metropolis
,
M. L.
Stein
, and
P. R.
Stein
, “
On finite limit sets for transformations on the unit interval
,”
J. Comb. Theory, Ser. A
44
,
25
44
(
1973
).
50.
L.
van Veen
,
S.
Kida
, and
G.
Kawahara
, “
Periodic motion representing isotropic turbulence
,”
Fluid Dyn. Res.
38
,
19
46
(
2006
).
You do not currently have access to this content.