A three-dimensional model of a die throw which considers the die bounces with dissipation on the fixed and oscillating table has been formulated. It allows simulations of the trajectories for dice with different shapes. Numerical results have been compared with the experimental observation using high speed camera. It is shown that for the realistic values of the initial energy the probabilities of the die landing on the face which is the lowest one at the beginning is larger than the probabilities of landing on any other face. We argue that non-smoothness of the system plays a key role in the occurrence of dynamical uncertainties and gives the explanation why for practically small uncertainties in the initial conditions a mechanical randomizer approximates the random process.

1.
G.
Cardano
,
Liber de Ludo Aleae [Book of Dice Games]
(
1663
) [English translation:
G.
Cardano
, The Book on Games of Chance, translated by
S. H.
Gould
(
Holt
,
Rinehart and Winston, New York
,
1953
)];
G.
Galilei
,
Sopra le Scoparte dei Dadi [Analysis of Dice Games]
(
1612
) [reprinted in
G.
Galileo
, “
Sopra le scoperte dei dadi
,” in Opere: A cura di Ferdinando Flora (
Ricciardi
,
Milan
,
1952
)];
C.
Huygens
, “
De Ratiociniis in Ludo Aleae
,” in
Francisci a Schooten Exercitationum Mathematicarum libri quinque
, edited by
F.
van Schooten
(
Elsevier
,
Leiden
,
1657
), pp.
517
524
.
2.
H.
Poincare
,
Calcul de Probabilites
(
George Carre
,
Paris
,
1896
).
3.
E.
Hopf
, “
On causality, statistics and probability
,”
J. Math. Phys.
13
,
51
(
1934
).
4.
J. B.
Keller
, “
The probability of heads
,”
Am. Math. Monthly
93
,
191
(
1986
).
5.
P.
Diaconis
,
S.
Holmes
, and
R.
Montgomery
, “
Dynamical bias in the coin toss
,”
SIAM Rev.
49
,
211
(
2007
).
6.
J.
Ford
, “
How random is a coin toss
,”
Phys. Today
36
(
4
),
40
(
1983
).
7.
R.
Feldberg
,
M.
Szymkat
,
C.
Knudsen
, and
E.
Mosekilde
, “
Iterated-map approach to die tossing
,”
Phys. Rev.
A42
,
4493
(
1995
).
8.
V. Z.
Vulovic
and
R. E.
Prange
, “
Randomness of true coin toss
,”
Phys. Rev. A
33
,
576
(
1986
).
9.
T.
Mizuguchi
and
M.
Suwashita
, “
Dynamics of coin tossing
,”
Prog. Theor. Phys. Suppl.
161
,
274
(
2006
).
10.
J.
Nagler
and
P.
Richter
, “
How random is dice tossing?
,”
Phys. Rev. E
78
,
036207
(
2008
).
11.
J.
Strzako
,
J.
Grabski
,
A
Stefanski
,
P.
Perlikowski
, and
T.
Kapitaniak
, “
Dynamics of coin tossing is predictable
,”
Phys. Rep.
469
,
59
(
2008
).
12.
J.
Strzalko
,
J.
Grabski
,
A.
Stefanski
, and
T.
Kapitaniak
, “
Can the dice be fair by dynamics?
,”
Int. J. Bifurcation Chaos
20
,
1175
(
2010
).
13.
J.
Strzalko
,
J.
Grabski
,
P.
Perlikowski
,
A.
Stefanski
, and
T.
Kapitaniak
, “
Understanding coin-tossing
,”
Math. Intell.
32
,
54
(
2010
).
14.
J.
Strzalko
,
J.
Grabski
,
P.
Perlikowski
,
A.
Stefanski
, and
T.
Kapitaniak
,
Dynamics of Gambling: Origins of Randomness in Mechanical Systems
, Lecture Notes in Physics Vol. 792 (
Springer
,
Berlin
,
2010
).
15.
B.
Grunbaum
, “
On polyhedra in E3 having all faces congruant
,”
Bull. Res. Counc. Isr.
8F
,
215
(
1960
).
16.
P.
Diaconis
and
J. B.
Keller
, “
Fair dice
,”
Am. Math. Monthly
96
,
337
(
1989
).
17.
For example
L.
Landau
and
E.
Lifschitz
,
Mechanics
(
Pergamon
,
Oxford
,
1976
);
H.
Goldstein
,
Classical Mechanics
(
Addison-Wesley
,
Reading
,
1950
).
18.
B.
Mirtich
, “
Fast and accurate computation of polyhedral mass properties
,”
J. Graph. Tools
1
,
2
(
1996
).
19.
J. I.
Nejmark
and
N. A.
Fufajev
,
Dynamics of Nonholonomic Systems
Translations of Mathematical Monographs (
American Mathematical Society
,
1972
), Vol.
33
.
20.
J.
Guckenheimer
and
P.
Holmes
,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vectorfields
(
Springer-Verlag
,
New York
,
1983
).
21.
N. B.
Tufillaro
,
T. M.
Mello
,
Y. M.
Choi
, and
A. M.
Albano
, “
Period doubling boundaries of a bouncing ball
,”
J. Phys.
47
,
1477
(
1993
).
22.
N. B.
Tufillaro
and
A. M.
Albano
, “
Chaotic dynamics of a bouncing ball
,”
Am. J. Phys.
54
,
939
(
1986
).
23.
A. B.
Nordmark
, “
Non-periodic motion caused by grazing incidence in an impact oscillator
,”
J. Sound Vib
.
145
,
279
(
1991
).
24.
M.
Di Bernardo
,
C. J.
Budd
, and
A. R.
Champneys
, “
Normal form maps for grazing bifurcations in n-dimensional piecewise-smooth dynamical systems
,”
Physica D
160
,
222
(
2000
).
25.
W.
Chin
,
E.
Ott
,
H. E.
Nusse
, and
C.
Grebogi
, “
Grazing bifurcations in impact oscillators
,”
Phys. Rev. E
50
,
4427
(
1994
).
26.
H.
Dankowicz
and
X.
Zhao
, “
Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators
,”
Physica D
202
,
238
(
2005
).
27.
H.
Dankowicz
and
A. B.
Nordmark
, “
On the origin and bifurcations of stick-slip oscillations
,”
Physica D
136
,
280
(
2000
).
28.
Y.
Zeng-Yuan
and
Z.
Bin
, “
On the sensitive dynamical system and the transition from the apparently deterministic process to the completely random process
,”
Appl. Math. Mech.
6
,
193
(
1985
).
29.
L.-U. W.
Hansen
,
M.
Christensen
, and
E.
Mosekilde
, “
Deterministic analysis of the pin-ball machine
,”
Phys. Scr.
51
,
35
45
(
1995
).
30.
R. J.
Deissler
and
J. D.
Farmer
, “
Deterministic noise amplifiers
,”
Physica D
55
,
155
165
(
1992
).
31.
T. A.
Bass
,
The Newtonian Casino
(
Penguin Books
,
London
,
1991
).
32.
J. P.
Marques de Sa
,
“Chance: The Life of Games and the Game of Life
(
Springer
,
Berlin
,
2008
).
33.
M.
Le Bellac
, “
The role of probabilities in physics
,” in
Proceedings of the conference Chance at the heart of the cell
, Lyons,
2011
.
You do not currently have access to this content.