We study the occurrence of the synchronous rotation of a set of four uncoupled nonidentical double pendula arranged into a cross structure mounted on a vertically excited platform. Under the excitation, the pendula can rotate in different directions (counter-clockwise or clockwise). It has been shown that after a transient, many different types of synchronous configurations with the constant phase difference between pendula can be observed. The experimental results qualitatively agree with the numerical simulations.
REFERENCES
1.
D.
Capecchi
and S. R.
Bishop
, “Periodic oscillations and attracting basins for a parametrically excited pendulum
,” Dyn. Stab. Syst.
9
(2
), 123
–143
(1994
).2.
M. J.
Clifford
and S. R.
Bishop
, “Rotating periodic orbits of the parametrically excited pendulum
,” Phys. Lett. A
201
, 191
–196
(1995
).3.
W.
Garira
and S. R.
Bishop
, “Rotating solutions of the parametrically excited pendulum
,” J. Sound Vib.
263
, 233
–239
(2003
).4.
Z.-M.
Ge
and T.-N.
Lin
, “Regular and chaotic dynamic analysis and control of chaos of an elliptical pendulum on a vibrating basement
,” J. Sound Vib.
230
(5
), 1045
–1068
(2000
).5.
A. N.
Grib
, P.
Seidel
, and J.
Scherbel
, “Synchronization of overdamped Josephson junctions shunted by a superconducting resonator
,” Phys. Rev. B
65
, 4508
–4510
(2002
).6.
B. P.
Koch
and R. W.
Leven
, “Subharmonic and homoclinic bifurcations in a parametrically forced pendulum
,” Physica D
16
, 1
–13
(1985
).7.
R. W.
Leven
and B. P.
Koch
, “Chaotic behaviour of a parametrically excited damped pendulum
,” Phys. Lett. A
86
, 71
–74
(1981
).8.
B. P.
Mann
and M. A.
Koplow
, “Symmetry breaking bifurcations of a parametrically excited pendulum
,” Nonlinear Dyn.
46
, 427
–437
(2006
).9.
D.
Sudor
and S. R.
Bishop
, “Inverted dynamics of a tilted pendulum
,” Eur. J. Mech. A/Solids
18
, 517
–526
(1999
).10.
W.
Szemplinska-Stupnicka
, E.
Tyrkiel
, and A.
Zubrzycki
, “The global bifurcations that lead to transient tumbling chaos in a parametrically driven pendulum
,” Int. J. Bifurcation Chaos
10
(9
), 2161
–2175
(2000
).11.
W.
Szemplinska-Stupnicka
and E.
Tyrkiel
, “The oscillation-rotation attractors in the forced pendulum and their peculiar properties
,” Int. J. Bifurcation Chaos
12
, 159
–168
(2002
).12.
H.
Yabuno
, M.
Miura
, and N.
Aoshima
, “Bifurcation in an inverted pendulum with tilted high frequency excitation: Analytical and experimental investigations on the symmetry-breaking of the bifurcation
,” J. Sound Vib.
273
, 479
–513
(2004
).13.
B.
Horton
, J.
Sieber
, M.
Wiercigroch
, and J. M. T.
Thompson
, “Dynamics of the elliptically excited pendulum
,” Int. J. Non-linear Mech.
46
, 436
–442
(2011
).14.
S.
Lenci
and G.
Rega
, “Competing dynamic solutions in a parametrically excited pendulum: Attractor robustness and basin integrity
,” ASME J. Comput. Nonlinear Dyn.
3
(4
), 41010
(2008
).15.
S.
Lenci
, E.
Pavlovskaia
, G.
Rega
, and M.
Wiercigroch
, “Rotating solutions and stability of parametric pendulum by perturbation method
,” J. Sound Vib.
310
(1–2
), 243
–259
(2008
).16.
X.
Xu
, M.
Wiercigroch
, and M. P.
Cartmell
, “Rotating orbits of a parametrically-excited pendulum
,” Chaos Solitons Fractals
23
(5
), 1537
–1548
(2005
).17.
X.
Xu
and M.
Wiercigroch
, “Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum
,” Nonlinear Dyn.
47
(1–3
), 311
–320
(2007
).18.
X.
Xu
, E.
Pavlovskaia
, M.
Wiercigroch
, F.
Romeo
, and S.
Lenci
, “Dynamic interactions between parametric pendulum and electro-dynamical shaker
,” ZAMM
87
(2
), 172
–186
(2007
).19.
F. A.
El-Barki
, A. I.
Ismail
, M. O.
Shaker
, and T. S.
Amer
, “On the motion of the pendulum on an ellipse
,” ZAMM
79
(1
), 65
–72
(1999
).20.
A. L.
Fradkov
and B.
Andrievsky
, “Synchronization and phase relations in the motion of two-pendulum system
,” Int. J. Non-linear Mech.
42
, 895
–901
(2007
).21.
M.
Wiercigroch
, “A new concept of energy extraction from waves via parametric pendulor
,” personal communications (2003
).22.
K.
Czolczynski
, Rotordynamics of Gas-Lubricated Journal Bearing Systems
(Springer
, New York
, 1999
).23.
24.
J. M.
Vance
, Y.
Fouad
, F. Y.
Zeidan
, and B.
Murphy
, Machinery Vibration and Rotordynamics
(Wiley
, London
, 2010
).25.
J. M.
Balthazar
, J. L.
Palacios Felix
, and R. MLRF Brasil, “Some comments on the numerical simulation of self-synchronization of four non-ideal exciters
,” Appl. Math. Comput.
164
, 615
–625
(2005
).26.
27.
V.
Anishchenko
, A.
Astakhov
, A.
Neiman
, T.
Vadivasova
, and L.
Schimansky-Geier
, Nonlinear Dynamics of Chaotic and Stochastic Systems
(Springer
, Berlin
, 2007
).28.
A.
Balanov
, N.
Janson
, D.
Postnov
, and O.
Sosnovtseva
, Synchronization: From Simple to Complex
(Springer
, Berlin
, 2009
).29.
S.
Boccaletti
, J.
Kurths
, G.
Osipov
, D. L.
Valladares
, and C. S.
Zhou
, “The synchronization of chaotic systems
,” Phys. Rep.
366
, 1
–101
(2002
).30.
P. S.
Landa
, Nonlinear Oscillations and Waves in Dynamical Systems
(Kluwer Academic
, Dordrecht
, 1996
).31.
L. M.
Pecora
, T. L.
Carroll
, G. A.
Johnson
, D. J.
Mar
, and J. F.
Heagy
, “Fundamentals of synchronization in chaotic systems, concepts, and applications
,” Chaos
7
, 520
–543
(1997
).32.
A.
Pikovsky
, M.
Rosenblum
, and J.
Kurths
, Synchronization: An Universal Concept in Nonlinear Sciences
(Cambridge University Press
, Cambridge, UK
, 2001
).33.
M. G.
Rosenblum
, A. S.
Pikovsky
, and J.
Kurths
, “Phase synchronization of chaotic oscillators
,” Phys. Rev. Lett.
76
, 1804
–1807
(1996
).34.
M. G.
Rosenblum
, A. S.
Pikovsky
, and J.
Kurths
, “From phase to lag synchronization in coupled oscillators
,” Phys. Rev. Lett.
78
, 4193
–4196
(1997
).35.
A.
Fillipov
, B.
Hu
, B.
Li
, and A.
Zeltser
, “Energy transport between two attractors connected by a Fermi-Pasta-Ulam chain
.” J. Phys. A
31
, 7719
(1998
).36.
K.
Czolczynski
, P.
Perlikowski
, A.
Stefanski
, and T.
Kapitaniak
, “Synchronization of slowly rotating pendulums
,” Int. J. Bifurcation Chaos
22
, 1250128
(2012
).37.
K.
Czolczynski
, P.
Perlikowski
, A.
Stefanski
, and T.
Kapitaniak
, “Synchronization of pendula rotating in different directions
,” Commun. Nonlinear Sci. Numer. Simul.
17
, 3658
–3672
(2012
).38.
K.
Czolczynski
, P.
Perlikowski
, A.
Stefanski
, and T.
Kapitaniak
, “Clustering of Huygens’ clocks
,” Prog. Theor. Phys.
122(4)
, 1027
–1033
(2009
).39.
K.
Czolczynski
, P.
Perlikowski
, A.
Stefanski
, and T.
Kapitaniak
, “Clustering and synchronization of Huygens’ clocks
,” Physica A
388
, 5013
–5023
(2009
).40.
M.
Kapitaniak
, K.
Czolczynski
, P.
Perlikowski
, A.
Stefanski
, and T.
Kapitaniak
, “Synchronization of clocks
,” Phys. Rep.
(2012
).41.
J.
Strzalko
, J.
Grabski
, A.
Stefanski
, and T.
Kapitaniak
, “Can dice be fair by dynamics?
,” Int. J. Bifurcation Chaos
20
, 1175
–1183
(2010
).42.
M.
Kapitaniak
, J.
Strzalko
, J.
Grabski
, and T.
Kapitaniak
, “The three-dimensional dynamics of the die throw
,” Chaos
22
, 047504
(2012
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.