Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The “complex” ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the “edge of chaos.”
REFERENCES
1.
M.
Sipser
, Introduction to the Theory of Computation
(International Thompson Publishing
, 1996
).2.
3.
G. A.
Hedlund
, “Endomorphisms and automorphisms of the shift dynamical system
,” Theory Comput. Syst.
3
(4
), 320
–375
(1969
).4.
5.
S.
Wolfram
, “Statistical mechanics of cellular automata
,” Rev. Mod. Phys.
55
(3
), 601
–644
(1983
).6.
S.
Wolfram
, “Universality and complexity in cellular automata
,” Physica D
10
(1–2
), 1
–35
(1984
).7.
W.
Li
and N.
Packard
, “The structure of the elementary cellular automata rule space
,” Complex Syst.
4
(3
), 281
–297
(1990
).8.
K.
Culik
and S.
Yu
, “Undecidability of CA classification schemes
,” Complex Syst.
2
(2
), 177
–190
(1988
).9.
R. H.
Gilman
, “Classes of linear cellular automata
,” Ergod. Theory Dyn. Syst.
7
, 105
–118
(1987
).10.
P.
Kurka
, “Languages, equicontinuity and attractors in cellular automata
,” Ergod. Theory Dyn. Syst.
17
(02
), 417
–433
(2001
).11.
P.
Kurka
, Topological and Symbolic Dynamics
, Vol. 11 (Société Mathématique de France
, 2003
).12.
B.
Durand
, E.
Formenti
, and G.
Varouchas
, “On undecidability of equicontinuity classification for cellular automata
,” Discrete Math. Theor. Comput. Sci.
AB
(DMCS
), 117
–128
(2003
).13.
O.
Martin
, A. M.
Odlyzko
, and S.
Wolfram
, “Algebraic properties of cellular automata
,” Commun. Math. Phys.
93
(2
), 219
–258
(1984
).14.
L. O.
Chua
, S.
Yoon
, and R.
Dogaru
, “A nonlinear dynamics perspective of Wolframs new kind of science. Part I: Threshold of complexity
,” Int. J. Bifurcation Chaos
12
(12
), 2655
–2766
(2002
).15.
M.
Schüle
, T.
Ott
, and R.
Stoop
, “Global dynamics of finite cellular automata
,” In Artificial Neural Networks, ICANN 2008
(2008
), pp. 71
–78
.16.
H.
Betel
and P.
Flocchini
, “On the relationship between boolean and fuzzy cellular automata
,” Electron. Notes Theor. Comput. Sci.
252
, 5
–21
(2009
).17.
18.
19.
P.
Kurka
, “Topological dynamics of one-dimensional cellular automata
,” In Mathematical Basis of Cellular Automata, Encyclopedia of Complexity and System Science
(Springer-Verlag
, 2008
).20.
21.
G.
Cattaneo
, M.
Finelli
, and L.
Margara
, “Investigating topological chaos by elementary cellular automata dynamics
,” Theor. Comput. Sci.
244
(1–2
), 219
–241
(2000
).22.
F.
Blanchard
and P.
Tisseur
, “Some properties of cellular automata with equicontinuity points
,” Ann. I.H.P. Probab. Stat.
36
(5
), 569
–582
(2000
).23.
M.
Cook
, “Universality in elementary cellular automata
,” Complex Syst.
15
(1
), 1
–40
(2004
).24.
N.
Ollinger
, “Universalities in cellular automata: A (short) survey
,” Proceedings of the First Symposium on Cellular Automata ‘Journées Automates Cellulaires’
, 102
–118
(2008
).25.
J. C.
Delvenne
, P.
Kurka
, and V.
Blondel
, “Decidability and universality in symbolic dynamical systems
,” Fund. Inform.
74
(4
), 463
–490
(2006
).26.
R.
Stoop
, N.
Stoop
, and L.
Bunimovich
, “Complexity of dynamics as variability of predictability
,” J. Stat. Phys.
114
(3
), 1127
–1137
(2004
).27.
R.
Stoop
and N.
Stoop
, “Natural computation measured as a reduction of complexity
,” Chaos
14
, 675
(2004
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.