Cellular automata are both computational and dynamical systems. We give a complete classification of the dynamic behaviour of elementary cellular automata (ECA) in terms of fundamental dynamic system notions such as sensitivity and chaoticity. The “complex” ECA emerge to be sensitive, but not chaotic and not eventually weakly periodic. Based on this classification, we conjecture that elementary cellular automata capable of carrying out complex computations, such as needed for Turing-universality, are at the “edge of chaos.”

1.
M.
Sipser
,
Introduction to the Theory of Computation
(
International Thompson Publishing
,
1996
).
2.
C. H.
Papadimitriou
,
Computational Complexity
(
John Wiley and Sons Ltd.
,
2003
).
3.
G. A.
Hedlund
,
“Endomorphisms and automorphisms of the shift dynamical system
,”
Theory Comput. Syst.
3
(
4
),
320
375
(
1969
).
4.
S.
Wolfram
, “
Cellular automata
,”
Los Alamos Sci.
9
(
2–21
),
2
27
(
1983
).
5.
S.
Wolfram
, “
Statistical mechanics of cellular automata
,”
Rev. Mod. Phys.
55
(
3
),
601
644
(
1983
).
6.
S.
Wolfram
, “
Universality and complexity in cellular automata
,”
Physica D
10
(
1–2
),
1
35
(
1984
).
7.
W.
Li
and
N.
Packard
, “
The structure of the elementary cellular automata rule space
,”
Complex Syst.
4
(
3
),
281
297
(
1990
).
8.
K.
Culik
and
S.
Yu
, “
Undecidability of CA classification schemes
,”
Complex Syst.
2
(
2
),
177
190
(
1988
).
9.
R. H.
Gilman
, “
Classes of linear cellular automata
,”
Ergod. Theory Dyn. Syst.
7
,
105
118
(
1987
).
10.
P.
Kurka
, “
Languages, equicontinuity and attractors in cellular automata
,”
Ergod. Theory Dyn. Syst.
17
(
02
),
417
433
(
2001
).
11.
P.
Kurka
,
Topological and Symbolic Dynamics
, Vol. 11 (
Société Mathématique de France
,
2003
).
12.
B.
Durand
,
E.
Formenti
, and
G.
Varouchas
, “
On undecidability of equicontinuity classification for cellular automata
,”
Discrete Math. Theor. Comput. Sci.
AB
(
DMCS
),
117
128
(
2003
).
13.
O.
Martin
,
A. M.
Odlyzko
, and
S.
Wolfram
, “
Algebraic properties of cellular automata
,”
Commun. Math. Phys.
93
(
2
),
219
258
(
1984
).
14.
L. O.
Chua
,
S.
Yoon
, and
R.
Dogaru
, “
A nonlinear dynamics perspective of Wolframs new kind of science. Part I: Threshold of complexity
,”
Int. J. Bifurcation Chaos
12
(
12
),
2655
2766
(
2002
).
15.
M.
Schüle
,
T.
Ott
, and
R.
Stoop
, “
Global dynamics of finite cellular automata
,” In
Artificial Neural Networks, ICANN 2008
(
2008
), pp.
71
78
.
16.
H.
Betel
and
P.
Flocchini
, “
On the relationship between boolean and fuzzy cellular automata
,”
Electron. Notes Theor. Comput. Sci.
252
,
5
21
(
2009
).
17.
E.
Mendelson
,
Introduction to Mathematical Logic
(
Chapman & Hall/CRC
,
1997
).
18.
S.
Wolfram
,
A New Kind of Science
(
Wolfram Media
,
2002
).
19.
P.
Kurka
, “
Topological dynamics of one-dimensional cellular automata
,” In
Mathematical Basis of Cellular Automata, Encyclopedia of Complexity and System Science
(
Springer-Verlag
,
2008
).
20.
R. L.
Devaney
,
An Introduction to Chaotic Dynamical Systems
(
Westview
,
2003
).
21.
G.
Cattaneo
,
M.
Finelli
, and
L.
Margara
, “
Investigating topological chaos by elementary cellular automata dynamics
,”
Theor. Comput. Sci.
244
(
1–2
),
219
241
(
2000
).
22.
F.
Blanchard
and
P.
Tisseur
, “
Some properties of cellular automata with equicontinuity points
,”
Ann. I.H.P. Probab. Stat.
36
(
5
),
569
582
(
2000
).
23.
M.
Cook
, “
Universality in elementary cellular automata
,”
Complex Syst.
15
(
1
),
1
40
(
2004
).
24.
N.
Ollinger
, “
Universalities in cellular automata: A (short) survey
,”
Proceedings of the First Symposium on Cellular Automata ‘Journées Automates Cellulaires’
,
102
118
(
2008
).
25.
J. C.
Delvenne
,
P.
Kurka
, and
V.
Blondel
, “
Decidability and universality in symbolic dynamical systems
,”
Fund. Inform.
74
(
4
),
463
490
(
2006
).
26.
R.
Stoop
,
N.
Stoop
, and
L.
Bunimovich
, “
Complexity of dynamics as variability of predictability
,”
J. Stat. Phys.
114
(
3
),
1127
1137
(
2004
).
27.
R.
Stoop
and
N.
Stoop
, “
Natural computation measured as a reduction of complexity
,”
Chaos
14
,
675
(
2004
).
You do not currently have access to this content.