In certain two-dimensional time-dependent flows, the braiding of periodic orbits provides a way to analyze chaos in the system through application of the Thurston-Nielsen classification theorem (TNCT). We expand upon earlier work that introduced the application of the TNCT to braiding of almost-cyclic sets, which are individual components of almost-invariant sets [Stremler et al., “Topological chaos and periodic braiding of almost-cyclic sets,” Phys. Rev. Lett. 106, 114101 (2011)]. In this context, almost-cyclic sets are periodic regions in the flow with high local residence time that act as stirrers or “ghost rods” around which the surrounding fluid appears to be stretched and folded. In the present work, we discuss the bifurcation of the almost-cyclic sets as a system parameter is varied, which results in a sequence of topologically distinct braids. We show that, for Stokes’ flow in a lid-driven cavity, these various braids give good lower bounds on the topological entropy over the respective parameter regimes in which they exist. We make the case that a topological analysis based on spatiotemporal braiding of almost-cyclic sets can be used for analyzing chaos in fluid flows. Hence, we further develop a connection between set-oriented statistical methods and topological methods, which promises to be an important analysis tool in the study of complex systems.

1.
E.
Ott
,
Chaos in Dynamical Systems
, 2nd ed. (
Cambridge University Press
,
2002
).
2.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos. Texts in Applied Mathematics
(
Springer
,
Berlin, Heidelberg
,
2003
).
3.
H.
Aref
, “
Stirring by chaotic advection
,”
J. Fluid Mech.
143
,
1
21
(
1984
).
4.
H.
Aref
, “
The development of chaotic advection
,”
Phys. Fluids
14
(
4
),
1315
1325
(
2002
).
5.
J. M.
Ottino
and
S.
Wiggins
, “
Introduction: mixing in microfluidics
,”
Philos. Trans. R. Soc. London, Ser. A
362
(
1818
),
923
935
(
2004
).
6.
M.
Stremler
,
F.
Haselton
, and
H.
Aref
, “
Designing for chaos: applications of chaotic advection at the microscale
,”
Philos. Trans. R. Soc. London
362
,
1019
1036
(
2004
).
7.
A.
Avez
,
Ergodic Problems in Classical Mechanics
(
Benjamin
,
New York
,
1968
).
8.
A. N.
Kolmogorov
, “
New metric invariant of transitive dynamical systems and endomorphisms of Lebesgue spaces
,”
Dokl. Phys.
119
(
5
),
861
864
(
1958
).
9.
Ya. G.
Sinai
, “
On the notion of entropy of a dynamical system
,”
Dokl. Phys.
124
,
768
771
(
1959
).
10.
V.
Rom-Kedar
and
S.
Wiggins
, “
Transport in two-dimensional maps
,”
Arch. Ration. Mech. Anal.
109
,
239
298
(
1990
).
11.
S.
Wiggins
,
Chaotic Transport in Dynamical Systems, Interdisciplinary Applied Mathematics
(
Springer
,
Berlin-Heidelberg-New York
,
1992
), Vol.
2
.
12.
G.
Haller
, “
Distinguished material surfaces and coherent structures in three-dimensional fluid flows
,”
Physica D: Nonlinear Phenom.
149
(
4
),
248
277
(
2001
).
13.
G.
Haller
, “
Finding finite-time invariant manifolds in two-dimensional velocity fields
,”
Chaos
10
(
1
),
99
108
(
2000
).
14.
H.
Helmholtz
, “
Über die Integrale der hydrodynamischen Gleichungen, welche Wirbelbewegungen entsprechen
,”
J. Reine Angew. Math.
55
,
25
55
(
1858
). Translation by P. G. Tait, “On integrals of the hydrodynamical equations which express vortex-motion,” Phil. Mag. 33, 485–512 (1867).
15.
R. L.
Ricca
, “
Structural complexity and dynamical systems
,” in
Lectures on Topological Fluid Mechanics, Lecture Notes in Mathematics
, Vol.
1973
, edited by
R. L.
Ricca
, (
Springer-Verlag
,
Berlin Heidelberg
,
2009
), pp.
167
186
.
16.
P. L.
Boyland
,
H.
Aref
, and
M. A.
Stremler
Topological fluid mechanics of stirring
,”
J. Fluid Mech.
403
,
277
304
(
2000
).
17.
R. L.
Adler
,
A. G.
Konheim
, and
M. H.
McAndrew
, “
Topological entropy
,”
Trans. Am. Math. Soc.
114
,
309
319
(
1965
).
18.
Y.
Yomdin
, “
Volume growth and entropy
,”
Isr. J. Math.
57
(
3
),
285
300
(
1987
).
19.
S. E.
Newhouse
, “
Continuity properties of entropy
,”
Ann. Math.
129
(
2
),
215
235
(
1989
).
20.
S. E.
Newhouse
, “
Entropy in smooth dynamical systems
,” in Proceedings of the International Congress of Mathematicians, 1991, Vols. 1 and 2, Mathematical Society of Japan, Tokyo (Kyoto,
1990
), pp.
1285
1294
.
21.
S.
Newhouse
and
T.
Pignatro
, “
On the estimation of topological entropy
,”
J. Stat. Phys.
72
(
5-6
),
1331
1351
(
1993
).
22.
R.
Bowen
, (1978) “
Entropy and the fundamental group
,” in
The Structure of Attractors in Dynamical Systems
, edited by
N. G.
Markley
,
J. C.
Martin
, and
W.
Perrizo
, Lecture Notes in Mathematics, (
Springer
,
Berlin
,
1978
), pp.
21
29
. in Proceedings, June 20–24 (North Dakota State University, 1977), Vol. 668.
23.
W.
Thurston
, “
On the geometry and dynamics of diffeomorphisms of surfaces
,”
Bull. Am. Math. Soc.
19
,
417
(
1988
).
24.
A. J.
Casson
and
S. A.
Bleiler
,
Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts
(
Cambridge University Press
,
Cambridge
,
1988
), Vol.
9
.
25.
A.
Fathi
,
F.
Laudenbach
, and
V.
Poénaru
,
Travaux de Thurston sur les surfaces
.
Société Mathématique de
,
France, Paris
,
1991
. Séminaire Orsay, Reprint of
Travaux de Thurston sur les surfaces
, Astérisque No. 66-67, Soc. Math. France, Paris, 1979.
26.
A.
Fathi
,
F.
Laudenbach
, and
V.
Poénaru
,
Thurston's Work on Surfaces, Mathematical Notes
(
Princeton University Press
,
Princeton, New Jersey
,
2012
). Translated by Djun M. Kim and Dan Margalit.
27.
L.
Boyland
, “
Topological methods in surface dynamics
,”
Topol. Appl.
58
(
3
),
223
298
(
1994
).
28.
M. D.
Finn
,
S. M.
Cox
, and
H. M.
Byrne
, “
Topological chaos in inviscid and viscous mixers
,”
J. Fluid Mech.
493
,
345
361
(
2003
).
29.
T.
Gouillart
,
J.
Thiffeault
, and
M.
Finn
, “
Topological mixing with ghost rods
,”
Phys. Rev. E
73
,
036111
(
2006
).
30.
M.
Stremler
, and
J.
Chen
, “
Generating topological chaos in lid-driven cavity flow
,”
Phys. Fluids
19
(
10
),
103602
(
2007
).
31.
P. L.
Boyland
,
M. A.
Stremler
, and
H.
Aref
, “
Topological fluid mechanics of point vortex motions
,”
Physica D
175
,
69
95
(
2003
).
32.
J.
Chen
and
M.
Stremler
, “
Topological chaos and mixing in a three-dimensional channel flow
,”
Phys. Fluids
21
,
021701
(
2009
).
33.
T.
Hall
, Train: A C++ Program for Computing Train Tracks of Surface Homoemorphism (
2001
).
34.
M.
Bestvina
and
M.
Handel
, “
Train-tracks for surface homeomorphisms
,”
Topology
34
(
1
),
109
140
(
1995
).
35.
M.
Handel
, “
Gobal shadowing of pseudo-Anosov homeomorphisms
,”
Ergod. Theory Dyn. Syst.
5
,
373
377
(
1985
).
36.
W.
Magnus
, “
Braid group: A survey
,” in Proceedings of the Second International Conference on the Theory of Groups, Lecture notes in Mathematics, (
Springer-Verlag
,
1974
), pp.
463
487
.
37.
J. S.
Birman
,
Braids, Links and Mapping Class Groups, Annals of Mathematics Studies
(
Princeton University Press
,
1975
), Vol.
82
.
38.
P. D.
Bangert
, “
Braids and knots
,” in
Lectures on Topological Fluid Mechanics
, edited by
R. L.
Ricca
, Lecture Notes in Mathematics, (
Springer-Verlag
,
Berlin, Heidelberg
,
2009
), Vol.
1973
, pp.
1
73
.
39.
J.
Thiffeault
, “
Measuring topological chaos
,”
Phys. Rev. Lett.
94
,
084502
(
2005
).
40.
J.
Thiffeault
, “
Braids of entangled particle trajectories
,”
Chaos
20
(
1
),
017516
(
2010
).
41.
M. A.
Stremler
,
S. D.
Ross
,
P.
Grover
, and
P.
Kumar
, “
Topological chaos and periodic braiding of almost-cyclic sets
,”
Phys. Rev. Lett.
106
,
114101
(
2011
).
42.
M.
Dellnitz
, and
O.
Junge
, “
On the approximation of complicated dynamical behavior
,”
SIAM J. Numer. Anal.
36
,
491
515
(
1999
).
43.
V. V.
Meleshko
and
A. M.
Gomilko
, “
Infinite systems for a biharmonic problem in a rectangle: further discussion
,”
Proc. R. Soc. Lond. Ser. A
460
,
807
819
(
2004
). Our choice of boundary conditions allows for an exact solution with a finite number of terms.
44.
W.
Burau
, “
Über Zopfgruppen und gleichsinnig verdrilte Verkettungen
,”
Abh. Math. Semin. Univ. Hambg.
11
,
171
178
(
1936
).
45.
T.
Hall
, and
S. O.
Yurttas
, “
On the topological entropy of families of braids
,”
Topol. Appl.
156
(
8
),
1554
1564
(
2009
).
46.
S.
Newhouse
and
T.
Pignataro
, “
On the estimation of topological entropy
,”
J. Stat. Phys.
72
,
1331
1351
(
1993
).
47.
G.
Froyland
and
K.
Padberg
, “
Almost-invariant sets and invariant manifolds – connecting probabilistic and geometric descriptions of coherent structures in flows
,”
Physica D
238
(
16
),
1507
1523
(
2009
).
48.
S. M.
Ulam
,
Problems in Modern Mathematics
(
Wiley
,
New York
,
1964
).
49.
T.
Li
, “
Finite approximation for the Fr obenius-Perron operator: A solution to Ulam's conjecture
,”
J. Approx. Theory
17
,
177
186
(
1976
).
50.
E. M.
Bollt
,
A.
Luttman
,
S.
Kramer
, and
R.
Basnayake
, “
Measurable dynamics analysis of transport in the Gulf of Mexico during the oil spill
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
22
(
3
),
1230012
(
2012
).
51.
E. M.
Bollt
,
L.
Billings
, and
I. B.
Schwartz
, “
A manifold independent approach to understanding transport in stochastic dynamical systems
,”
Physica D
173
,
153
177
(
2002
).
52.
G.
Froyland
, “
Statistically optimal almost-invariant sets
,”
Physica D
200
,
205
219
(
2005
).
53.
P.
Brémaud
,
Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues, Texts in Applied Mathematics
(
Springer
,
New York
,
1999
).
54.
G.
Froyland
and
M.
Dellnitz
, “
Detecting and locating near-optimal almost-invariant sets and cycles
,”
SIAM J. Sci. Comput.
24
,
1839
1863
(
2003
).
55.
V.
Rom-Kedar
and
S.
Wiggins
, “
Transport in two-dimensional maps: Concepts, examples, and a comparison of the theory of Rom-Kedar and Wiggins with the Markov model of MacKay, Meiss, Ott, and Percival
,”
Physica D
51
,
248
266
(
1991
).
56.
M.
Dellnitz
,
O.
Junge
,
W. S.
Koon
,
F.
Lekien
,
M. W.
Lo
,
J. E.
Marsden
,
K.
Padberg
,
R.
Preis
,
S. D.
Ross
, and
B.
Thiere
, “
Transport in dynamical astronomy and multibody problems
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
15
,
699
727
(
2005
).
57.
P. C.
Du Toit
and
J. E.
Marsden
, “
Horseshoes in hurricanes
,”
J. Fixed Point Theory Appl.
7
(
2
),
351
384
(
2010
).
58.
S. D.
Ross
and
P.
Tallapragada
, “
Detecting and exploiting chaotic transport in mechanical systems
,” in
Applications of Chaos and Nonlinear Dynamics in Science and Engineering
, edited by
S.
Banerjee
,
L.
Rondoni
, and
M.
Mitra
(
Springer
,
New York
2012
), Vol.
2
.
59.
O.
Junge
,
J. E.
Marsden
, and
I.
Mezic
, “
Uncertainty in the dynamics of conservative maps
,” in
Proceedings of the 43rd IEEE Conference on Decision and Control
, (
2004
), pp.
2225
2230
.
60.
M.
Dellnitz
and
I.
Melbourne
, “
Generic movement of eigenvalues for equivariant self-adjoint matrices
,”
Comput. Appl. Math.
55
,
249
259
(
1994
).
61.
See supplementary material at http://dx.doi.org/10.1063/1.4768666 for a video showing transitions between various eigenvectors as τf is changed.
62.
G.
Froyland
,
K.
Padberg
,
M.
England
, and
A.
Treguier
, “
Detecting coherent oceanic structures via transfer operators
,”
Phys. Rev. Lett.
98
,
224503
(
2007
).
63.
L.
Billings
and
I. B.
Schwartz
, “
Identifying almost invariant sets in stochastic dynamical systems
,”
Chaos
18
(
2
),
023122
(
2008
).
64.
G.
Froyland
,
N.
Santitissadeekorn
, and
A.
Monahan
, “
Transport in time-dependent dynamical systems: Finite-time coherent sets
,”
Chaos
20
,
043116
(
2010
).
65.
M. K.
Singh
,
M. F. M.
Speetjens
, and
P. D.
Anderson
, “
Eigenmode analysis of scalar transport in distributive mixing
,”
Phys. Fluids
21
(
9
),
093601
(
2009
).
66.
W.
Liu
and
G.
Haller
, “
Strange eigenmodes and decay of variance in the mixing of diffusive tracers
,”
Physica D
188
,
1
39
(
2004
).
67.
G.
Froyland
,
S.
Lloyd
, and
N.
Santitissadeekorn
, “
Coherent sets for nonautonomous dynamical systems
,”
Physica D
239
,
1527
1541
(
2010
).
68.
R.
Serban
,
W.
Koon
,
M.
Lo
,
J.
Marsden
,
L.
Petzold
,
S. D.
Ross
, and
R.
Wilson
, “
Halo orbit mission correction maneuvers using optimal control
,”
Automatica
38
,
571
583
(
2002
).
69.
W. S.
Koon
,
M. W.
Lo
,
J. E.
Marsden
, and
S. D.
Ross
,
Dynamical Systems, the Three-Body Problem and Space Mission Design
(
Marsden Books
,
2008
) ISBN 978-0-615-24095-4.
70.
J. E.
Marsden
and
S. D.
Ross
, “
New methods in celestial mechanics and mission design
,”
Bull. Am. Math. Soc.
43
,
43
73
(
2006
).
71.
P.
Grover
and
S. D.
Ross
, “
Designing trajectories in a planet-moon environment using the controlled Keplerian map
,”
J. Guid. Control Dyn.
32
,
436
443
(
2009
).
72.
F.
Lekien
and
S. D.
Ross
, “
The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds
,”
Chaos
20
,
017505
(
2010
).
73.
G.
Froyland
,
O.
Junge
, and
P.
Koltai
, “Estimating long term behaviour of flows without trajectory integration: The infinitesimal generator approach,” available at arxiv:1101:4166.

Supplementary Material

You do not currently have access to this content.