The analysis of nonlinear delay-differential equations (DDEs) subjected to external forcing is difficult due to the infinite dimensionality of the space in which they evolve. To simplify the analysis of such systems, the present work develops a non-homogeneous center manifold (CM) reduction scheme, which allows the derivation of a time-dependent order parameter equation in finite dimension. This differential equation captures the major dynamical features of the delayed system. The forcing is assumed to be small compared to the amplitude of the autonomous system, in order to cause only small variations of the fixed points and of the autonomous CM. The time-dependent CM is shown to satisfy a non-homogeneous partial differential equation. We first briefly review CM theory for DDEs. Then we show, for the general scalar case, how an ansatz that separates the CM into one for the autonomous problem plus an additional time-dependent order-two correction leads to satisfying results. The paper then details the application to a transcritical bifurcation subjected to single or multiple periodic forcings. The validity limits of the reduction scheme are also highlighted. Finally, we characterize the specific case of additive stochastic driving of the transcritical bifurcation, where additive white noise shifts the mode of the probability density function of the state variable to larger amplitudes.

1.
R.
Lang
and
K.
Kobayashi
, “
External optical feedback effects on semi-conductor injection laser properties
,”
IEEE J. Quantum Electron.
16
,
347
(
1980
).
2.
T.
Erneux
,
Applied Delay Differential Equations
, Surveys and Tutorials in the Applied Mathematical Sciences (
Springer
,
2009
).
3.
I. Z.
Kiss
,
C. G.
Rusin
,
H.
Kori
, and
J. L.
Hudson
, “
Engineering complex dynamical structures: Sequential patterns and desynchronization
,”
Science
316
,
1886
(
2007
).
4.
V.
Kolmanovskii
and
A.
Myshkis
,
Applied Theory of Functional Differential Equations
(
Kluwer
,
Boston
,
1992
).
5.
P.
Hovel
and
E.
Scholl
, “
Control of steady states by time-delayed feedback methods
,”
Phys. Rev. E
72
,
046203
(
2005
).
6.
J.
Bechhoefer
, “
Feedback for physicists: A tutorial essay on control
,”
Rev. Mod. Phys.
77
,
783
836
(
2005
).
7.
Complex Time-Delay Systems. Theory and Application
, edited by
F. M.
Atay
(
Springer
,
Berlin
,
2010
).
8.
N.
MacDonald
,
Biological Delay Systems: Linear Stability Theory
. Cambridge Studies in Mathematical Biology Vol.
8
(
Cambridge University Press
,
Cambridge, UK
,
1989
).
9.
L.
Glass
,
A.
Beuter
, and
D.
Larocque
, “
Time delays, oscillations, and chaos in physiological control systems
,”
Math. Biosci.
90
,
111
(
1988
).
10.
A.
Longtin
,
J. G.
Milton
,
J. E.
Bos
, and
M. C.
Mackey
, “
Noise and critical behavior of the pupil light reflex at oscillation onset
,”
Phys. Rev. A
41
,
6992
(
1990
).
11.
C. W.
Eurich
and
J. G.
Milton
, “
Noise-induced transitions in human postural sway
,”
Phys. Rev. E
54
,
6681
6684
(
1996
).
12.
J.
Boulet
,
R.
Balasubramaniam
,
A.
Daffertshofer
, and
A.
Longtin
, “
Stochastic two delay-differential model of delayed visual feedback effects on postural dynamics
,”
Philos. Trans. R. Soc. A
368
(
1911
),
423
438
(
2010
).
13.
J.
Belair
,
S. A.
Campbell
, and
P.
van den Driessche
, “
Frustration, stability and delay-induced oscillations in a neural network model
,”
SIAM J. Appl. Math.
56
,
245
255
(
1996
).
14.
V. K.
Jirsa
, “
Connectivity and dynamics of neural information processing
,”
Neuroinformatics
2
,
183
204
(
2004
).
15.
G.
Deco
,
V.
Jirsa
,
A. R.
McIntosh
,
O.
Sporns
, and
R.
Kotter
, “
Key role of coupling, delay, and noise in resting brain fluctuations
,”
Prco. Natl. Acad. Sci. U.S.A.
106
,
10302
10307
(
2009
).
16.
F. M.
Schneider
,
M. A.
Dahlem
, and
E.
Scholl
, “
Failure of feedback as a putative common mechanism of spreading depolarizations in migraine and stroke
,”
Chaos
18
,
026110
(
2008
).
17.
A.
Hutt
, “
Sleep and anesthesia
,”
Front. Neurosci.
3
(
3
),
408
409
(
2009
).
18.
C.
Laing
and
S.
Coombes
, “
The importance of different timings of excitatory and inhibitory pathways in neural field models
,”
Network
17
,
151
(
2006
).
19.
F. M.
Atay
and
A.
Hutt
, “
Neural fields with distributed transmission speeds and long-range feedback delays
,”
SIAM J. Appl. Dyn. Syst.
5
(
4
),
670
698
(
2006
).
20.
J.
Lefebvre
,
A.
Longtin
, and
V. G.
LeBlanc
, “
Dynamics of driven recurrent networks of on and off cells
,”
Phys. Rev. E
80
,
041912
(
2009
).
21.
M. J.
Chacron
,
A.
Longtin
, and
L.
Maler
, “
Delayed excitatory and inhibitory feedback shape neural information transmission
,”
Phys. Rev. E
72
,
051917
(
2005
).
22.
S.-A.
Campbell
and
J.
Belair
, “
Analytical and symbolically-assisted investigations of hopf bifurcations in delay-differential equations
,”
Can. Appl. Math. Q.
3
,
137
154
(
1995
).
23.
H.
Haken
,
Synergetics-An Introduction
, third and enlarged edition (
Springer
,
1983
).
24.
C.
Chicone
and
Y.
Latushkin
, “
Center manifolds for infinite dimensional nonautonomous differential equations
,”
J. Differ. Equations
141
,
356
399
(
1997
).
25.
P.
Boxler
, “
A stochastic version of center manifold theory
,”
Probab. Theory Relat. Fields
83
,
509
(
1989
).
26.
D.
Bloemker
, “
Amplitude equations for locally cubic non-autonomous nonlinearities
,”
SIAM J. Appl. Dyn. Syst.
2
(
3
),
464
495
(
2003
).
27.
A.
Hutt
,
A.
Longtin
, and
L.
Schimansky-Geier
, “
Additive global noise delays turing bifurcations
,”
Phys. Rev. Lett.
98
,
230601
(
2007
).
28.
S. M.
Cox
and
A. J.
Roberts
, “
Center manifolds of forced dynamical systems
,”
J. Austral. Math. Soc. Ser. B, Appl. Math.
32
,
401
436
(
1991
).
29.
A.
Hutt
,
J.
Lefebvre
, and
A.
Longtin
, “
Delay stabilizes stochastic systems near a non-oscillatory instability
,”
Europhys. Lett.
98
,
20004
(
2012
).
30.
J. K.
Hale
and
S. M. V.
Lunel
,
Introduction to Functional Differential Equations
(
Springer
,
Berlin
,
1993
).
31.
W.
Wischert
,
A.
Wunderlin
, and
A.
Pelster
, “
Delay-induced instabilities in nonlinear feedback systems
,”
Phys. Rev. E
49(1)
,
203
219
(
1994
).
32.
R.
Quesmi
,
M.
Ait Babram
, and
M. L.
Hbid
, “
A maple program for computing a terms of a center manifold, and element of bifurcations for a class of retarded functional differential equations with Hopf singularity
,”
Appl. Math. Comput.
175
,
932
968
(
2006
).
33.
S.-A.
Campbell
, “
Calculating center manifolds for delay differential equations using maple
,” in
Delay Differential Equations: Recent Advances and New Directions
(
Springer-Verlag
,
New York
,
2008
).
34.
T.
Faria
and
L. T.
Magalhaes
, “
Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation
,”
J. Differ. Equations
122
,
281
(
1995
).
35.
M.
Schanz
and
A.
Pelster
, “
Synergetic system analysis for the delay-induced Hopf bifurcation in the Wright equation
,”
SIAM J. Appl. Dyn. Syst.
2
(
3
),
277
296
(
2003
).
36.
R.
Quesmi
,
M.
Ait Babram
, and
M. L.
Hbid
, “
Center manifolds and normal forms for a class of retarded functional differential equations with parameter associated with fold-Hopf singularity
,”
Appl. Math. Comput.
181
,
220
246
(
2006
).
37.
F. M.
Asl
and
A. G.
Ulsoy
, “
Analysis of a system of linear delay differential equations
,”
J. Dyn. Syst., Meas., Control
125
,
215
223
(
2003
).
38.
J. C.
Ji
and
C. H.
Hansen
, “
Forced phase-locked response of a nonlinear system with time delay after Hopf bifurcation
,”
Chaos, Solitons Fractals
25
,
461
473
(
2005
).
39.
J.
Xu
and
K. W.
Chung
, “
Effects of time delayed position feedback on a van der pol-duffing oscillator
,”
Physica D
180
,
17
39
(
2003
).
40.
T. D.
Frank
and
P. J.
Beek
, “
Stationary solutions of linear stochastic delay differential equations: Applications to biological systems
,”
Phys. Rev. E
64
,
021917
(
2001
).
41.
S.
Guillouzic
,
I.
L'Heureux
, and
A.
Longtin
, “
Small delay approximation of stochastic delay differential equation
,”
Phys. Rev. E
59(4)
,
3970
(
1999
).
42.
A.
Amann
,
E.
Scholl
, and
W.
Just
, “
Some basic remarks on eigenmode expansions of time-delay dynamics
,”
Physica A
373
,
191
202
(
2007
).
43.
R.
Bellmann
and
K. L.
Cooke
,
Differential-Difference Equations
(
Academic
,
New York
,
1963
).
44.
U.
Küchler
and
B.
Mensch
, “
Langevin stochastic differential equation extended by a time-delayed term
,”
Stoch. Stoch. Rep.
40
,
23
42
(
1992
).
45.
A.
Hutt
,
A.
Longtin
, and
L.
Schimansky-Geier
, “
Additive noise-induced turing transitions in spatial systems with applications to neural fields and Swift-Hohenberg equations
,”
Physica D
237
,
755
773
(
2008
).
46.
A.
Hutt
, “
Additive noise may change the stability of non-linear systems
,”
Europhys. Lett.
84
,
1
4
(
2008
).
47.
M.
Pradas
,
D.
Tseluiko
,
S.
Kalliadasis
,
D. T.
Papageorgiou
, and
G. A.
Pavliotis
, “
Noise induced state transitions, intermittency, and universality in the noisy Kuramoto-Sivashinksy equation
,”
Phys. Rev. Lett.
106
,
060602
(
2011
).
48.
M.
Gaudreault
,
F.
Drolet
, and
J.
Vinals
, “
Analytical determination of the bifurcation thresholds in stochastic differential equations with delayed feedback
,”
Phys. Rev. E
82
,
051124
(
2010
).
49.
A.
Longtin
, “
Noise-induced transitions at a hopf bifurcation in a first order delay-differential equation
,”
Phys. Rev. A
44
,
4801
(
1991
).
50.
J.
Carr
,
Applications of Center Manifold Theory
, Applied Mathematical Sciences Vol. 35 (
Springer Verlag
,
New York
,
1981
).
51.
O.
Arino
,
M. L.
Hbid
, and
E.
Ait Dads
,
Delay Differential Equations and Applications
, NATO Science Series (
Springer Verlag
,
1999
).
52.
B.
Redmond
,
V. G.
LeBlanc
, and
A.
Longtin
, “
Bifurcation analysis of a class of first-order nonlinear delay-differential equations with reflectional symmetry
,”
Physica D
166
,
131
146
(
2002
).
53.
A.
Hutt
, “
Effects of nonlocal feedback on traveling fronts in neural fields subject to transmission delay
,”
Phys. Rev. E
70
,
052902
(
2004
).
54.
B. N.
Pasley
,
E. A.
Allen
, and
R. D.
Freeman
, “
State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex
,”
Neuron
62
,
291
303
(
2009
).
55.
C. S.
Herrmann
, “
Human EEG responses to 1-100 Hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena
,”
Exp. Brain Res.
137
,
346
353
(
2001
).
56.
E. W.
Tsang
,
C.
Hamani
,
E.
Moro
,
F.
Mazzella
,
U.
Saha
,
A. M.
Lozano
,
M.
Hodaie
,
R.
Chuang
,
T.
Steeves
,
S. Y.
Lim
,
B.
Neagu
, and
R.
Chen
, “
Subthalamic deep brain stimulation at individualized frequencies for Parkinson disease
,”
Neurology
78
,
1930
1938
(
2012
).
57.
J. M.
Buldú
,
R.
Vicente
,
T.
Pérez
,
C. R.
Mirasso
,
M. C.
Torrent
, and
J.
Garcia-Ojalvo
, “
Periodic entrainment of power dropouts in mutually coupled semiconductor lasers
,”
Appl. Phys. Lett.
81
,
5105
(
2002
).
You do not currently have access to this content.