Formation or destruction of hyperbolic chaotic attractor under parameter variation is considered with an example represented by Smale–Williams solenoid in stroboscopic Poincaré map of two alternately excited non-autonomous van der Pol oscillators. The transition occupies a narrow but finite parameter interval and progresses in such way that periodic orbits constituting a “skeleton” of the attractor undergo saddle-node bifurcation events involving partner orbits from the attractor and from a non-attracting invariant set, which forms together with its stable manifold a basin boundary of the attractor.
REFERENCES
1.
A.
Katok
and B.
Hasselblatt
, Introduction to the Modern Theory of Dynamical Systems
(Cambridge University Press
, New York
, 1995
).2.
L.
Shilnikov
, Int. J. Bifurcation Chaos Appl. Sci. Eng.
7
, 1953
(1997
).3.
D. V.
Anosov
, G. G.
Gould
, S. K.
Aranson
et al., Encyclopaedia of Mathematical Sciences
(Springer
, Berlin
, 1995
), Vol. 9
.4.
S.
Smale
, Bull. Am. Math. Soc.
73
, 747
(1967
).5.
R. F.
Williams
, Publ.
Math
., Inst. Hautes Etud. Sci.
43
, 169
(1974
).6.
R. V.
Plykin
, Math. USSR. Sb.
23
(2
), 233
(1974
) (in Russian).7.
C.
Bonatti
, L. J.
Diaz
, and M.
Viana
, Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probobalistic Perspective, Encyclopedia of Mathematical Sciences
Vol. 102
, (Springer
, Berlin
, 2005
).8.
V. S.
Anishchenko
, Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments
(Springer
, Berlin
, 2002
).9.
A.
Loskutov
, Phys. Usp.
53
, 1257
(2010
).10.
S. P.
Kuznetsov
, Phys. Rev. Lett.
95
, 144101
(2005
).11.
S. P.
Kuznetsov
and A.
Pikovsky
, Physica D
232
, 87
(2007
).12.
S. P.
Kuznetsov
, Hyperbolic Chaos: A Physicist's View, Mathematical Methods and Modeling for Complex Phenomena
(Higher Education
, Beijing
, 2012
).13.
S. P.
Kuznetsov
, Phys. Usp.
54
, 119
(2011
).14.
D.
Ruelle
and F.
Takens
, Commun. Math. Phys.
20
, 167
(1971
).15.
S.
Newhouse
, D.
Ruelle
, and F.
Takens
, Commun. Math. Phys.
64
, 35
(1978
).16.
17.
L. P.
Shil'nikov
and D. V.
Turaev
, Comput. Math. Appl.
34
, 173
(1997
).18.
S. P.
Kuznetsov
, Regular Chaotic Dyn.
15
(2-3
), 348
(2010
).19.
S. P.
Kuznetsov
and I. R.
Sataev
, Phys. Lett. A
365
, 97
(2007
).20.
D.
Wilczak
, SIAM J. Appl. Dyn. Syst.
9
, 1263
(2010
).21.
C.
Grebogi
, E.
Ott
, and J. A.
Yorke
, Physica D
7
, 181
(1983
).22.
23.
P.
Cvitanović
, Physica D
51
, 138
(1991
).24.
D.
Auerbach
, P.
Cvitanović
, J.-P.
Eckmann
, G. H.
Gunaratne
, and I.
Procaccia
, Phys. Rev. Lett.
58
, 2387
(1987
).25.
A.
Pikovsky
, M.
Zaks
, M.
Rosenblum
, G.
Osipov
, and J.
Kurths
, Chaos
7
, 680
(1997
).26.
T.
Kapitaniak
, Yu.
Maistrenko
, and S.
Popovich
, Phys. Rev. E
62
, 1972
(2000
).27.
R. L.
Devaney
, An Introduction to Chaotic Dynamical Systems
(Westview
, New York
, 2003
).28.
O.
Biham
and W.
Wenzel
, Phys. Rev. A
42
, 4639
(1990
).29.
O. B.
Isaeva
, S. P.
Kuznetsov
, and A. H.
Osbaldestin
, Physica D
237
, 873
(2008
).© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.