Formation or destruction of hyperbolic chaotic attractor under parameter variation is considered with an example represented by Smale–Williams solenoid in stroboscopic Poincaré map of two alternately excited non-autonomous van der Pol oscillators. The transition occupies a narrow but finite parameter interval and progresses in such way that periodic orbits constituting a “skeleton” of the attractor undergo saddle-node bifurcation events involving partner orbits from the attractor and from a non-attracting invariant set, which forms together with its stable manifold a basin boundary of the attractor.

1.
A.
Katok
and
B.
Hasselblatt
,
Introduction to the Modern Theory of Dynamical Systems
(
Cambridge University Press
,
New York
,
1995
).
2.
L.
Shilnikov
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
7
,
1953
(
1997
).
3.
D. V.
Anosov
,
G. G.
Gould
,
S. K.
Aranson
 et al.,
Encyclopaedia of Mathematical Sciences
(
Springer
,
Berlin
,
1995
), Vol.
9
.
4.
5.
R. F.
Williams
,
Publ.
Math
.,
Inst. Hautes Etud. Sci.
43
,
169
(
1974
).
6.
R. V.
Plykin
,
Math. USSR. Sb.
23
(
2
),
233
(
1974
) (in Russian).
7.
C.
Bonatti
,
L. J.
Diaz
, and
M.
Viana
,
Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probobalistic Perspective, Encyclopedia of Mathematical Sciences
Vol.
102
, (
Springer
,
Berlin
,
2005
).
8.
V. S.
Anishchenko
,
Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments
(
Springer
,
Berlin
,
2002
).
10.
S. P.
Kuznetsov
,
Phys. Rev. Lett.
95
,
144101
(
2005
).
11.
S. P.
Kuznetsov
and
A.
Pikovsky
,
Physica D
232
,
87
(
2007
).
12.
S. P.
Kuznetsov
,
Hyperbolic Chaos: A Physicist's View, Mathematical Methods and Modeling for Complex Phenomena
(
Higher Education
,
Beijing
,
2012
).
13.
14.
D.
Ruelle
and
F.
Takens
,
Commun. Math. Phys.
20
,
167
(
1971
).
15.
S.
Newhouse
,
D.
Ruelle
, and
F.
Takens
,
Commun. Math. Phys.
64
,
35
(
1978
).
16.
L. P.
Shil'nikov
and
D. V.
Turaev
,
Dokl. Akad. Nauk
342
(
5
),
596
(
1995
).
17.
L. P.
Shil'nikov
and
D. V.
Turaev
,
Comput. Math. Appl.
34
,
173
(
1997
).
18.
S. P.
Kuznetsov
,
Regular Chaotic Dyn.
15
(
2-3
),
348
(
2010
).
19.
S. P.
Kuznetsov
and
I. R.
Sataev
,
Phys. Lett. A
365
,
97
(
2007
).
20.
D.
Wilczak
,
SIAM J. Appl. Dyn. Syst.
9
,
1263
(
2010
).
21.
C.
Grebogi
,
E.
Ott
, and
J. A.
Yorke
,
Physica D
7
,
181
(
1983
).
22.
Yu. A.
Kuznetsov
,
Elements of Applied Bifurcation Theory
(
Springer
,
1998
).
24.
D.
Auerbach
,
P.
Cvitanović
,
J.-P.
Eckmann
,
G. H.
Gunaratne
, and
I.
Procaccia
,
Phys. Rev. Lett.
58
,
2387
(
1987
).
25.
A.
Pikovsky
,
M.
Zaks
,
M.
Rosenblum
,
G.
Osipov
, and
J.
Kurths
,
Chaos
7
,
680
(
1997
).
26.
T.
Kapitaniak
,
Yu.
Maistrenko
, and
S.
Popovich
,
Phys. Rev. E
62
,
1972
(
2000
).
27.
R. L.
Devaney
,
An Introduction to Chaotic Dynamical Systems
(
Westview
,
New York
,
2003
).
28.
O.
Biham
and
W.
Wenzel
,
Phys. Rev. A
42
,
4639
(
1990
).
29.
O. B.
Isaeva
,
S. P.
Kuznetsov
, and
A. H.
Osbaldestin
,
Physica D
237
,
873
(
2008
).
You do not currently have access to this content.