We develop a microeconomical model to investigate the impact of technological change onto production decisions of suppliers—modeling an effective feedback mechanism of the market. An important property—the time horizon of production planning—is related to the Kolmogorov entropy of the one-dimensional maps describing price dynamics. We simulate this price dynamics in an ensemble representing the whole macroeconomy. We show how this model can be used to support ongoing research in economic growth and incorporate the obtained microeconomic findings into the discussion about appropriate macroeconomic quantities such as the production function—thus effectively underpinning macroeconomics with microeconomical dynamics. From there we can show that the model exhibits different dynamical regimes (suggesting “phase transitions”) with respect to an order parameter. The non-linear feedback under technological change was found to be the crucial mechanism. The implications of the obtained regimes are finally discussed.

1.
R.
Sato
,
Theory of Technological Change and Economic Invariance
(
Elgar
,
Cheltenham
,
1999
).
2.
P. M.
Romer
,
J. Polit. Econ.
94
,
1002
(
1986
).
3.
S.
Parente
,
Knowledge, Technol. Policy
13
,
49
(
2001
).
4.
R. M.
Solow
,
Rev. Econ. Stat.
39
,
312
(
1957
).
5.
R. M.
Solow
, New York Times Book Review, p.
36
(
1987
).
6.
D. W.
Jorgenson
,
Am. Econ. Rev.
91
,
1
(
2001
).
7.
L. R.
Ngai
,
J. Monetary Econ.
51
,
1353
(
2004
).
8.
G. D.
Hansen
and
E. C.
Prescott
,
Am. Econ. Rev.
92
,
1205
(
2002
).
9.
A.
Shaikh
,
Rev. Econ. Stat.
56
,
115
(
1974
).
10.
H.-P.
Deutsch
,
Derivatives and Internal Models
, 3rd ed. (
Palgrave MacMillan
,
Hampshire
,
2004
).
11.
C.
Hauert
and
G.
Szabó
,
Am. J. Phys.
73
,
405
(
2005
).
12.
J.
Feigenbaum
,
Rep. Prog. Phys.
66
,
1611
(
2003
).
13.
M.
Ezekiel
,
Q. J. Econ.
52
,
255
(
1938
).
14.
K. T.
Alligood
,
T. D.
Sauer
, and
J. A.
Yorke
,
Chaos: An Introduction to Dynamical Systems
(
Springer
,
New York
,
1997
).
16.
J.
Holmes
and
R.
Manning
,
Econ. Lett.
28
,
1
(
1988
).
17.
A.
Matsumoto
,
Discrete Dyn. Nat. Soc.
1
,
135
(
1997
).
18.
A.
Matsumoto
,
Ann. Operat. Res.
89
,
101
(
1999
).
19.
W.
Brock
and
C.
Hommes
,
Econometrica
65
,
1059
(
1997
).
20.
J.
Sonnemans
,
C.
Hommes
,
J.
Tuinstra
, and
H.
van de Velden
,
J. Econ. Behav. Organ.
54
,
453
(
2004
).
21.
K.
Schenk-Hoppé
,
J. Forecast.
23
,
621
(
2004
).
22.
D.
Kendrick
,
J. Econ. Dyn. Control
29
,
3
(
2005
).
23.
J.
Bene
and
P.
Szepfalusy
,
Phys. Rev. A
37
,
871
(
1988
).
24.
K.
Harikrishnan
and
V.
Nandakumaran
,
Pramana
29
,
533
(
1987
).
25.
Z.
AlSharawi
and
J.
Angelos
,
Appl. Math. Comput.
180
,
342
(
2006
).
26.
M.
Grinfeld
,
P.
Knight
, and
H.
Lamba
,
J. Phys. A
29
,
8035
(
1996
).
27.
J.
Kuroiwa
and
T.
Miki
,
Int. J. Bifurcat. Chaos
14
,
2407
(
2004
).
28.
M. P.
Joy
,
Comment on “On the bifurcation in a “modulated” logistic map
,”
Phys. Lett. A
202
, 237–239 (
1995
).
29.
R.
Kapral
and
P.
Mandel
,
Phys. Rev. A
32
,
1076
(
1985
).
30.
J.
Crutchfield
,
J.
Farmer
, and
B.
Huberman
,
Phys. Rep.
92
,
45
(
1982
).
32.
E.
Leonel
,
J.
da Silva
, and
S.
Kamphorst
,
Physica A
295
,
280
(
2001
).
34.
D.
Ruelle
and
N. O.
Weiss
,
Proc. R. Soc. London, Ser. A
413
,
5
(
1987
).
35.
S.
Wiggins
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos, Texts in Applied Mathematics
, 2nd ed. (
Springer
,
New York
,
2003
).
37.
K.
Stefański
,
K.
Buszko
, and
K.
Piecyk
,
Chaos
20
,
033117
(
2010
).
38.
H. G.
Schuster
,
Deterministisches Chaos
, 2nd ed. (
VCH
,
Weinheim, New York/Basel/Cambridge/Tokyo
,
1994
).
39.
W.
Ott
,
M.
Stenlund
, and
L.-S.
Young
,
Math. Res. Lett.
16
,
463
(
2009
).
40.
P.
Nándori
,
D.
Szász
, and
T.
Varjú
,
J. Stat. Phys.
146
,
1213
(
2012
).
You do not currently have access to this content.