Under which conditions can a network of pulse-coupled oscillators sustain stable collective activity states? Previously, it was shown that stability of the simplest pattern conceivable, i.e., global synchrony, in networks of symmetrically pulse-coupled oscillators can be decided in a rigorous mathematical fashion, if interactions either all advance or all retard oscillation phases (“mono-interaction network”). Yet, many real-world networks—for example neuronal circuits—are asymmetric and moreover crucially feature both types of interactions. Here, we study complex networks of excitatory (phase-advancing) and inhibitory (phase-retarding) leaky integrate-and-fire (LIF) oscillators. We show that for small coupling strength, previous results for mono-interaction networks also apply here: pulse time perturbations eventually decay if they are smaller than a transmission delay and if all eigenvalues of the linear stability operator have absolute value smaller or equal to one. In this case, the level of inhibition must typically be significantly stronger than that of excitation to ensure local stability of synchrony. For stronger coupling, however, network synchrony eventually becomes unstable to any finite perturbation, even if inhibition is strong and all eigenvalues of the stability operator are at most unity. This new type of instability occurs when any oscillator, inspite of receiving inhibitory input from the network on average, can by chance receive sufficient excitatory input to fire a pulse before all other pulses in the system are delivered, thus breaking the near-synchronous perturbation pattern.

1.
S. H.
Strogatz
, “
Exploring complex networks
,”
Nature (London)
410
,
268
276
(
2001
).
2.
A.
Arenas
,
A.
Diaz-Guilera
,
J.
Kurths
,
Y.
Moreno
, and
C.
Zhou
, “
Synchronization in complex networks
,”
Phys. Rep.
469
,
93
153
(
2008
).
3.
R. E.
Mirollo
and
S. H.
Strogatz
, “
Synchronization of pulse-coupled biological oscillators
,”
J. Appl. Math.
50
,
1645
1662
(
1990
).
4.
A.
Tyrell
,
G.
Auer
, and
C.
Bettstetter
, “
Emergent slot synchronization in wireless networks
,”
IEEE Trans. Mobile Comput.
9
,
719
732
(
2010
).
5.
C.
Borgers
and
N.
Kopell
, “
Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity
,”
Neural Comput.
15
,
509
538
(
2003
).
6.
J.
Cui
,
C.
Canavier
, and
R.
Butera
, “
Functional phase response curves: A method for understanding synchronization of adapting neurons
,”
J. Neurophysiol.
102
,
387
398
(
2009
).
7.
U.
Ernst
,
K.
Pawelzik
, and
T.
Geisel
, “
Synchronization induced by temporal delays in pulse-coupled oscillators
,”
Phys. Rev. Lett.
74
,
1570
1573
(
1995
).
8.
M.
Timme
,
F.
Wolf
, and
T.
Geisel
, “
Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators
,”
Phys. Rev. Lett.
89
,
258701
(
2002
).
9.
M.
Timme
and
F.
Wolf
, “
The simplest problem in the collective dynamics of neural networks: Is synchrony stable?
,”
Nonlinearity
21
,
1579
1599
(
2008
).
10.
M.
Timme
,
F.
Wolf
, and
T.
Geisel
, “
Topological speed limits to network synchronization
,”
Phys. Rev. Lett.
92
,
074101
(
2004
).
11.
C.
Grabow
,
S.
Hill
,
S.
Grosskinsky
, and
M.
Timme
, “
Do small worlds synchronize fastest?
,”
Europhys. Lett.
90
,
48002
(
2010
).
12.
C.
Grabow
,
S.
Grosskinsky
, and
M.
Timme
, “
Speed of complex network synchronization
,”
Eur. Phys. J. B
84
,
613
626
(
2011
).
13.
M.
Denker
, “
Complex networks of spiking neurons with a generalized rise function
,” M.S. thesis (
Institute for Nonlinear Dynamics, Georg August University
, Goettingen,
2002
).
14.
P.
Dayan
and
L. F.
Abbott
,
Theoretical Neuroscience
(
MIT
,
Cambridge
,
2001
).
15.
W.
Gerstner
and
W.
Kistler
,
Spiking Neuron Models: Single Neurons, Populations, Plasticity
(
Cambridge University Press
,
2002
).
16.
B.
Kriener
,
L.
Anand
, and
M.
Timme
, “
Complex networks: When random walk dynamics equals pulse synchronization
,” New J. Phys. (accepted).
17.
N.
Brunel
, “
Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons
,”
J. Comput. Neurosci.
8
,
183
208
(
2000
).
18.
K.
Rajan
and
L.
Abbott
, “
Eigenvalue spectra of random matrices for neural networks
,”
Phys. Rev. Lett.
97
,
188104
(
2006
).
19.
M.
Denker
,
M.
Timme
,
M.
Diesmann
,
F.
Wolf
, and
T.
Geisel
, “
Breaking synchrony by heterogeneity in complex networks
,”
Phys. Rev. Lett.
92
,
074103
1
074103
4
(
2004
).
20.
B.
Kriener
,
M.
Helias
,
S.
Rotter
,
M.
Diesmann
, and
G.
Einevoll
, “Pattern formation in ring networks of excitatory and inhibitory spiking neurons,” (unpublished).
21.
S.
Jahnke
,
R.-M.
Memmesheimer
, and
M.
Timme
, “
How chaotic is the balanced state?
,”
Fron. Comput. Neurosci.
3
,
1
15
(
2009
).
22.
B. K.
Murphy
and
K. D.
Miller
, “
Balanced amplification: A new mechanism of selective amplification of neural activity patterns
,”
Neuron
61
,
635
648
(
2009
).
23.
C.
van Vreeswijk
and
H.
Sompolinsky
, “
Chaos in neuronal networks with balanced excitatory and inhibitory activity
,”
Science
274
,
1724
1726
(
1996
).
24.
R.
Albert
and
A.
Barabasi
, “
Statistical mechanics of complex networks
,”
Rev. Mod. Phys.
74
,
47
97
(
2002
).
25.
O.
Sporns
and
D. Z.
Zwi
, “
The small world of the cerebral cortex
,”
Neuroinformatics
2
,
145
162
(
2004
).
26.
D. J.
Watts
and
S. H.
Strogatz
, “
Collective dynamics of small-world networks
,”
Nature
393
,
440
442
(
1998
).
27.
A. E.
Villa
and
M.
Abeles
, “
Evidence for spatiotemporal firing patterns within the auditory thalamus of the cat
,”
Brain Res.
509
,
325
327
(
1990
).
28.
M.
Diesmann
,
M.-O.
Gewaltig
, and
A.
Aertsen
, “
Stable propagation of synchronous spiking in cortical neural networks
,”
Nature (London)
402
,
529
533
(
1999
).
29.
R. H.
Hahnloser
,
A. A.
Kozhevnikov
, and
M. S.
Fee
, “
An ultra-sparse code underlies the generation of neural sequences in a songbird
,”
Nature (London)
419
,
65
70
(
2002
).
30.
D. Z.
Jin
, “
Fast convergence of spike sequences to periodic patterns in recurrent networks
,”
Phys. Rev. Lett.
89
,
208102
(
2002
).
31.
R.-M.
Memmesheimer
and
M.
Timme
, “
Stable and unstable periodic orbits in complex networks of spiking neurons with delay
,”
Discrete Contin. Dyn. Syst.
28
,
1555
1588
(
2010
).
You do not currently have access to this content.