Convergence to a stable limit cycle of a periodically driven nonlinear pendulum is analyzed in this paper. The concept of the H-rank of a scalar sequence is used for the assessment of transient processes of the system. The circle map is used to illustrate the complex structure of the manifold of non-asymptotic convergence to a fixed point. It is demonstrated that the manifold of non-asymptotic convergence to a stable limit cycle also exists in the stroboscopic representation of the transient data of the periodically driven nonlinear pendulum. A simple method based on a short external impulse is proposed for the control of transient processes when the transition time to stable limit cycles must be minimized.

1.
M.
Ragulskis
and
Z.
Navickas
,
Commun. Nonlinear Sci. Numer. Simul.
16
,
2894
(
2011
).
2.
F. A. B. F.
de Moura
,
U.
Tirnakli
, and
M. L.
Lyra
,
Phys. Rev. E
62
,
6361
(
2000
).
3.
R.
Tonelli
and
M.
Coraddu
,
Eur. Phys. J. B
50
,
355
(
2006
).
4.
C. L.
Bresten
and
J.-H.
Jung
,
Commun. Nonlinear Sci. Numer. Simul.
14
,
3076
(
2009
).
5.
F.
Christiansen
and
H. H.
Rugh
,
Nonlinearity
10
,
1063
(
1997
).
6.
S.
Habib
and
R. D.
Ryne
,
Phys. Rev. Lett.
74
,
70
(
1995
).
7.
J. A.
Sanders
and
F.
Verhulst
,
Averaging Methods in Nonlinear Dynamical Systems
(
Springer
,
New York
,
1985
).
8.
C.
Chicone
,
Ordinary Differential Equations with Applications
(
Springer
,
New York
,
1999
).
9.
P.
Giesl
,
Nonlinear Anal. Theory, Methods Appl.
56
,
643
(
2004
).
10.
F. L.
Traversa
and
F.
Bonani
,
AEU Int. J. Electron. Commun.
66
,
357
(
2012
).
11.
Z.
Navickas
and
L.
Bikulciene
,
Math. Modell. Anal.
11
,
399
(
2005
).
12.
S.
Ostlund
,
D.
Randt
,
J.
Sethna
, and
E.
Siggia
,
Physica D
8
,
303
(
1983
).
13.
M. H.
Jensen
,
P.
Bak
, and
T.
Bohr
,
Phys. Rev. Lett.
50
,
1637
(
1983
).
14.
M. H.
Jensen
,
P.
Bak
, and
T.
Bohr
,
Phys. Rev. A
30
,
1960
(
1984
).
16.
P. L.
Boyland
,
Commun. Math. Phys.
106
,
353
(
1986
).
17.
F.
Schilder
and
B. B.
Peckham
,
J. Comput. Phys.
220
,
932
(
2007
).
18.
J.
Escalona
,
J. V.
José
, and
P.
Tiesinga
,
Neurocomputing
44–46
,
91
(
2002
).
19.
R. C.
Hilborn
,
Chaos and Nonlinear Dynamics
(
Oxford University Press
,
Oxford
,
2000
).
20.
N. M.
Newmark
,
J. Eng. Mech.
85
,
67
(
1959
).
You do not currently have access to this content.