This paper introduces an approach to assess and improve the time-dependent resilience of urban infrastructure systems, where resilience is defined as the systems’ ability to resist various possible hazards, absorb the initial damage from hazards, and recover to normal operation one or multiple times during a time period T. For different values of T and its position relative to current time, there are three forms of resilience: previous resilience, current potential resilience, and future potential resilience. This paper mainly discusses the third form that takes into account the systems’ future evolving processes. Taking the power transmission grid in Harris County, Texas, USA as an example, the time-dependent features of resilience and the effectiveness of some resilience-inspired strategies, including enhancement of situational awareness, management of consumer demand, and integration of distributed generators, are all simulated and discussed. Results show a nonlinear nature of resilience as a function of T, which may exhibit a transition from an increasing function to a decreasing function at either a threshold of post-blackout improvement rate, a threshold of load profile with consumer demand management, or a threshold number of integrated distributed generators. These results are further confirmed by studying a typical benchmark system such as the IEEE RTS-96. Such common trends indicate that some resilience strategies may enhance infrastructure system resilience in the short term, but if not managed well, they may compromise practical utility system resilience in the long run.

1.
President’s Commission on Critical Infrastructure Protection (PCCIP), “Critical foundations: Protecting America’s infrastructures: The report of the President’s Commission on Critical Infrastructure Protection,” Report No. 040-000-00699-1, U.S. Government Printing Office, Washington, D.C.,
1997
.
2.
U.S. Department of Energy, “Grid 2030: A national vision for electricity’s second 100 years, based on the results of the National Electric System Vision Meeting,” Washington, DC, 2-3 April,
2003
, Available at http://www.ferc.gov/eventcalendar/files/20050608125055-grid-2030.pdf [online].
3.
E.
Hollnagel
,
D. D.
Woods
, and
N.
Leveso
,
Resilience Engineering: Concepts and Precepts
(
Ashgate
,
2006
).
4.
C. S.
Holling
,
Annu. Rev. Ecol. Syst.
4
,
1
23
(
1973
).
9.
M.
Bruneau
,
S. E.
Chang
,
R. T.
Eguchi
 et al.,
Earthquake Spectra
19
,
733
752
(
2003
).
10.
U.S. Department of Homeland Security, “National infrastructure protection plan, partnering to enhance protection and resiliency,”
2009
, Available at http://www.dhs.gov/xlibrary/assets/NIPP_Plan.pdf [online].
11.
J. H.
Kahan
,
A. C.
Allen
, and
J. K.
George
,
J. Homeland Secur. Emerg. Management.
6
,
83
(
2009
).
12.
E. D.
Vugrin
,
D. E.
Warren
,
M. A.
Ehlen
, and
R. C.
Camphouse
, “
A framework for assessing the resilience of infrastructure and economic systems
,” in
Sustainable and Resilient Critical Infrastructure Systems: Simulation, Modeling, and Intelligent Engineering
, edited by
Kasthurirangan
Gopalakrishnan
and
Srinivas
Peeta
(
Springer-Verlag, Inc.
,
2010
).
13.
S. E.
Chang
and
M.
Shinozuka
,
Earthquake Spectra
20
,
739
755
(
2004
).
14.
M.
Bruneau
and
A. M.
Reinhorn
,
Earthquake Spectra
23
,
41
62
(
2007
).
15.
D. A.
Reed
,
K. C.
Kapur
, and
R. D.
Christie
,
IEEE Syst. J.
3
,
174
180
(
2009
).
16.
G.
Cimellaro
,
A.
Reinhorn
, and
M.
Bruneau
,
Eng. Struct.
32
,
3639
3649
(
2010
).
17.
C. W.
Zobel
,
Decision Support Syst.
50
,
394
403
(
2010
).
18.
M.
Ouyang
and
L.
Dueñas-Osorio
,
Struct. Saf.
36/37
,
23
31
(
2012
).
19.
Platts, Topology of the State of Texas Power Transmission Network,
2009
, Available at http://www.platts.com/ [online].
20.
D. L.
Pepyne
,
J. Syst. Sci. Syst. Eng.
16
,
202
221
(
2007
).
21.
I.
Dobson
,
B. A.
Carreras
,
V. E.
Lynch
, and
D. E.
Newman
,
Chaos
17
,
026103
(
2007
).
22.
I.
Dobson
,
B. A.
Carreras
,
V.
Lynch
, and
D. E.
Newman
, in the
34th Hawaii International Conference on System Sciences
, Maui, Hawaii, January
2001
.
23.
D. S.
Kirschen
,
D.
Jayaweera
,
D. P.
Nedic
, and
R. N.
Allan
,
IEEE Trans. Power Syst.
19
,
1650
1657
(
2004
).
24.
J.
Chen
,
J. S.
Thorp
, and
I.
Dobson
,
Electr. Power Energy Syst.
27
,
318
326
(
2005
).
25.
S.
Arianos
,
E.
Bompard
,
A.
Carbone
, and
F.
Xue
,
Chaos
19
,
013119
(
2009
).
26.
M.
Anghel
,
K. A.
Werley
, and
A. E.
Motter
, in
Fortieth Hawaii International Conference on System Sciences
, Big Island, Hawaii, 3–6 January
2007
.
27.
N. X.
Xu
,
S. D.
Guikema
,
R. A.
Davidson
,
L. K.
Nozick
,
Z.
Cagnan
, and
K.
Vaziri
,
Earthquake Eng. Struct. Dyn.
36
,
265
284
(
2007
).
28.
U.S. Canada Power System Outage Task Force, “Final report on the August 14, 2003 blackout in the United States and Canada: Causes and recommendations,” Final Report, 11 October
2006
, Available at https://reports.energy.gov/BlackoutFinal-Web.pdf [online].
29.
G.
Andesson
,
P.
Donalek
,
R.
Farmer
 et al.,
IEEE Trans. Power Syst.
20
,
1922
1928
(
2005
).
30.
R.
Adler
,
S.
Daniel
,
C.
Heising
,
M.
Lauby
,
R.
Ludorf
, and
T.
White
,
IEEE Trans. Power Delivery
9
,
21
39
(
1994
).
31.
Ontario resource and transmission assessment criteria, Load security and restoration criteria,
2007
, Available at http://www.ieso.ca/imoweb/pubs/consult/se50/IMO_REQ_0041TransmissionAssessmentCriteria_Section%207.pdf [online].
32.
National Institute of Standards and Technology, “White paper: Energy—technologies to enable a smart grid,”
2001
, Available at http://www.nist.gov/tip/wp/upload/energy_wp_10_28_10.pdf.
33.
X.
Chen
,
H.
Dinh
, and
B.
Wang
, in
the First IEEE International Conference on Smart Grid Communications, Gaithersburg
(
2010
), pp.
73
78
.
34.
D.
Henry
and
J. E.
Ramirez-Marquez
,
Reliab. Eng. Syst. Saf.
99
,
114
122
(
2012
).
35.
C.
Grigg
,
P.
Wong
,
P.
Albrecht
 et al.,
IEEE Trans. Power Syst.
14
(
3
),
1010
1020
(
1999
).
36.
An approach to design interface topologies across interdependent urban infrastructure systems
,”
Reliab. Eng. Syst. Saf.
96(11),
1462
1473
(
2012
).
You do not currently have access to this content.