The stochastically perturbed Chen system is studied within the parameter region which permits both regular and chaotic oscillations. As noise intensity increases and passes some threshold value, noise-induced hopping between close portions of the stochastic cycle can be observed. Through these transitions, the stochastic cycle is deformed to be a stochastic attractor that looks like chaotic. In this paper for investigation of these transitions, a constructive method based on the stochastic sensitivity function technique with confidence ellipses is suggested and discussed in detail. Analyzing a mutual arrangement of these ellipses, we estimate the threshold noise intensity corresponding to chaotization of the stochastic attractor. Capabilities of this geometric method for detailed analysis of the noise-induced hopping which generates chaos are demonstrated on the stochastic Chen system.

1.
F.
Moss
and
P. V. E.
McClintock
,
Noise in Nonlinear Dynamical Systems
(
Cambridge University Press
,
Cambridge
,
2007
).
2.
V. S.
Anishchenko
,
V. V.
Astakhov
,
A. B.
Neiman
,
T. E.
Vadivasova
, and
L.
Schimansky-Geier
,
Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development
(
Springer-Verlag
,
Berlin
,
2007
).
3.
W.
Horsthemke
and
R.
Lefever
,
Noise-Induced Transitions
(
Springer
,
Berlin
,
1984
).
4.
P. S.
Landa
and
P. V. E.
McClintock
,
Phys. Rep.
323
,
1
(
2000
).
5.
L.
Arnold
,
Random Dynamical Systems
(
Springer-Verlag
,
Berlin
,
1998
).
6.
R.
Lefever
and
J.
Turner
,
Phys. Rev. Lett.
56
,
1631
(
1986
).
7.
K.
Malick
and
P.
Marcq
,
Eur. Phys. J.
36
,
119
(
2003
).
8.
L.
Gammaitoni
,
P.
Hanggi
,
P.
Jung
, and
F.
Marchesoni
,
Rev. Mod. Phys.
70
,
223
(
1998
).
9.
M. D.
McDonnell
,
N. G.
Stocks
,
C. E. M.
Pearce
, and
D.
Abbott
,
Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization
(
Cambridge University Press
,
Cambridge
,
2008
).
10.
K.
Matsumoto
and
I.
Tsuda
,
J. Stat. Phys.
31
,
87
(
1983
).
11.
F.
Gassmann
,
Phys. Rev. E
55
,
2215
(
1997
).
12.
J. B.
Gao
,
S. K.
Hwang
, and
J. M.
Liu
,
Phys. Rev. Lett.
82
,
1132
(
1999
).
13.
S.
Ellner
and
P.
Turchin
,
Oikos
111
,
620
(
2005
).
14.
Y.-C.
Lai
and
T.
Tel
,
Transient Chaos. Complex Dynamics on Finite Time Scales, Applied Mathematical Sciences
Vol. 173 (
Springer
,
2011
).
15.
B.
Lindner
,
J.
Garcia-Ojalvo
,
A.
Neiman
, and
L.
Schimansky-Geier
,
Phys. Rep.
392
,
321
(
2004
).
16.
L.
Ryashko
and
I.
Bashkirtseva
,
Phys. Rev. E
83
,
061109
(
2011
).
17.
R. J.
Reategui
and
A. N.
Pisarchik
,
Phys. Rev. E
69
,
067203
(
2004
).
18.
S.
Aumaitre
,
K.
Mallick
, and
F.
Pétrélis
,
J. Stat. Mech.: Theory Exp.
2007
,
P07016
(
2007
).
19.
M.
Pradas
,
D.
Tseluiko
,
S.
Kalliadasis
,
D. T.
Papageorgiou
, and
G. A.
Pavliotis
,
Phys. Rev. Lett.
106
,
060602
(
2011
).
20.
J. C.
Sommerer
,
E.
Ott
, and
C.
Grebogi
,
Phys. Rev. A
43
,
1754
(
1991
).
21.
V. S.
Anishchenko
and
M. E.
Khairulin
,
Tech. Phys. Lett.
37
,
561
(
2011
).
22.
A. S.
Pikovsky
and
J.
Kurths
,
Phys. Rev. Lett.
78
,
775
(
1997
).
23.
J. B.
Gao
,
W. W.
Tung
, and
N. S. V.
Rao
,
Phys. Rev. Lett.
89
,
254101
(
2002
).
24.
C. B.
Muratov
and
E.
Vanden-Eijnden
,
Chaos
18
,
015111
(
2008
).
25.
Y.-C.
Lai
,
Z.
Liu
,
L.
Billings
, and
I. B.
Schwartz
,
Phys. Rev. E
67
,
026210
(
2003
).
26.
F.
Arecchi
,
R.
Badii
, and
A.
Politi
,
Phys. Rev. A
32
,
402
(
1985
).
27.
S.
Kraut
and
U.
Feudel
,
Phys. Rev. E
66
,
015207
(
2002
).
28.
W.-W.
Tung
,
J.
Hu
,
J.
Gao
, and
V.
Billock
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
18
,
1749
(
2008
).
29.
G.
Mayer-Kress
and
H.
Haken
,
J. Stat. Phys.
26
,
149
(
1981
).
30.
J. P.
Crutchfeld
,
J. D.
Farmer
, and
B. A.
Huberman
,
Phys. Rep.
92
,
45
(
1982
).
31.
I.
Bashkirtseva
,
L.
Ryashko
, and
P.
Stikhin
,
Fluct. Noise Lett.
9
,
89
(
2010
).
32.
T.
Tel
and
J.-C.
Lai
,
Phys. Rev. E
81
,
056208
(
2010
).
33.
I.
Bashkirtseva
and
L.
Ryashko
,
Phys. Rev. E
79
,
041106
(
2009
).
34.
S.
Čelikovský
and
G.
Chen
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
12
,
1789
(
2002
).
35.
M. I.
Freidlin
and
A. D.
Wentzell
,
Random Perturbations of Dynamical Systems
(
Springer
,
Berlin
,
1984
).
36.
I. A.
Bashkirtseva
and
L. B.
Ryashko
,
Math. Comput. Simul.
66
,
55
(
2004
).
37.
L.
Ryashko
,
I.
Bashkirtseva
,
A.
Gubkin
, and
P.
Stikhin
,
Math. Comput. Simul.
80
,
256
(
2009
).
38.
T.
Ueta
and
G.
Chen
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
10
,
1917
(
2000
).
39.
I.
Bashkirtseva
,
G.
Chen
, and
L.
Ryashko
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
20
,
1439
(
2010
).
40.
G.
Benettin
,
L.
Galgani
,
A.
Giorgilli
, and
J.-M.
Strelcyn
,
Meccanica
15
,
21
(
1980
).
41.
C.
Skokos
,
Lect. Notes Phys.
790
,
63
(
2010
).
You do not currently have access to this content.