Pinning and depinning of fronts bounding spatially localized structures in the forced complex Ginzburg-Landau equation describing the 1:1 resonance is studied in one spatial dimension, focusing on regimes in which the structure grows via roll insertion instead of roll nucleation at either edge. The motion of the fronts is nonlocal but can be analyzed quantitatively near the depinning transition.

1.
Ackemann
,
T.
,
Firth
,
W. J.
, and
Oppo
,
G.-L.
, “
Fundamentals and applications of spatial dissipative solitons in photonic devices
,” in
Advances in Atomic, Molecular and Optical Physics
, edited by
P. R.
Berman
,
E.
Arimondo
, and
C. C.
Lin
(
Academic Press
,
2009
), Vol. 57, pp.
323
421
.
2.
Aranson
,
I. S.
,
Malomed
,
B. A.
,
Pismen
,
L. M.
, and
Tsimring
,
L. S.
, “
Crystallization kinetics and self-induced pinning in cellular patterns
,”
Phys. Rev. E
62
,
R5
R8
(
2000
).
3.
Barten
,
W.
,
Lücke
,
M.
, and
Kamps
,
M.
, “
Localized traveling-wave convection in binary-fluid mixtures
,”
Phys. Rev. Lett.
66
,
2621
2624
(
1991
).
4.
Batiste
,
O.
,
Knobloch
,
E.
,
Alonso
,
A.
, and
Mercader
,
I.
, “
Spatially localized binary-fluid convection
,”
J. Fluid Mech.
560
,
149
158
(
2006
).
5.
Beck
,
M.
, and
Wayne
,
C. E.
, “
Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity
,”
SIAM Rev.
53
,
129
153
(
2011
).
6.
Bergeon
,
A.
, and
Knobloch
,
E.
, “
Spatially localized states in natural doubly diffusive convection
,”
Phys. Fluids
20
,
034102
(
2008
).
7.
Blanchflower
,
S.
, “
Magnetohydrodynamic convectons
,”
Phys. Lett. A
261
,
74
81
(
1999
).
8.
Burke
,
J.
,
Houghton
,
S. M.
, and
Knobloch
,
E.
, “
Swift-Hohenberg equation with broken reflection symmetry
,”
Phys. Rev. E
80
,
036202
(
2009
).
9.
Burke
,
J.
, and
Knobloch
,
E.
, “
Localized states in the generalized Swift-Hohenberg equation
,”
Phys. Rev. E
73
,
056211
(
2006
).
10.
Burke
,
J.
, and
Knobloch
,
E.
, “
Homoclinic snaking: Structure and stability
,”
Chaos
17
,
037102
(
2007
).
11.
Champneys
,
A. R.
,
Knobloch
,
E.
,
Ma
,
Y.-P.
, and
Wagenknecht
,
T.
, “
Homoclinic snakes bounded by a saddle-centre periodic orbit
,”
SIAM J. Appl. Dyn. Sys.
(submitted).
12.
Coullet
,
P.
, and
Emilsson
,
K.
, “
Strong resonances of spatially distributed oscillators: A laboratory to study patterns and defects
,”
Physica D
61
,
119
131
(
1992
).
13.
Coullet
,
P.
,
Riera
,
C.
, and
Tresser
,
C.
, “
Stable static localized structures in one dimension
,”
Phys. Rev. Lett.
84
,
3069
3072
(
2000
).
14.
Cox
,
S. M.
, and
Matthews
,
P. C.
, “
Exponential time differencing for stiff systems
,”
J. Comput. Phys.
176
,
430
455
(
2002
).
15.
Dennin
,
M.
,
Ahlers
,
G.
, and
Cannell
,
D. S.
, “
Spatiotemporal chaos in electroconvection
,”
Science
272
(
5260
),
388
390
(
1996
).
16.
Houghton
,
S. M.
, and
Knobloch
,
E.
, “
The Swift-Hohenberg equation with broken cubic-quintic nonlinearity
,”
Phys. Rev. E
84
,
016204
(
2011
).
17.
Hoyle
,
R.
,
Pattern Formation
(
Cambridge University Press
,
Cambridge
,
2006
).
18.
Kolodner
,
P.
,
Bensimon
,
D.
, and
Surko
,
C. M.
, “
Traveling-wave convection in an annulus
,”
Phys. Rev. Lett.
60
,
1723
1726
(
1988
).
19.
Krechetnikov
,
R.
, and
Marsden
,
J. E.
, “
Dissipation-induced instabilities in finite dimensions
,”
Rev. Mod. Phys.
79
,
519
553
(
2007
).
20.
Lioubashevski
,
O.
,
Arbell
,
H.
, and
Fineberg
,
J.
, “
Dissipative solitary waves in driven surface waves
,”
Phys. Rev. Lett.
76
,
3959
3962
(
1996
).
21.
Lombardi
,
E.
, “
Oscillatory integrals and phenomena beyond all algebraic orders: With applications to homoclinic orbits in reversible systems
,” in
Lecture Notes in Mathematics
(
Springer
,
2000
).
22.
Ma
,
Y.-P.
,
Burke
,
J.
, and
Knobloch
,
E.
, “
Defect-mediated snaking: A new growth mechanism for localized structures
,”
Physica D
239
,
1867
1883
(
2010
).
23.
Ma
,
Y.-P.
, and
Knobloch
,
E.
, “
Localized states in the forced complex Ginzburg-Landau equation with 1:1 resonance
,”
preprint
(
2010
).
24.
Pomeau
,
Y.
, “
Front motion, metastability and subcritical bifurcations in hydrodynamics
,”
Physica D
23
,
3
11
(
1986
).
25.
Rajchenbach
,
J.
,
Leroux
,
A.
, and
Clamond
,
D.
, “
New standing solitary waves in water
,”
Phys. Rev. Lett.
107
,
024502
(
2011
).
26.
Riecke
,
H.
, and
Granzow
,
G. D.
, “
Localization of waves without bistability: Worms in nematic electroconvection
,”
Phys. Rev. Lett.
81
,
333
336
(
1998
).
27.
Sandstede
,
B.
, “
Stability of travelling waves
,” in
Handbook of Dynamical Systems
(
Elsevier Science
,
2002
), Vol. 2, pp.
983
1055
.
28.
Sandstede
,
B.
, and
Scheel
,
A.
, “
Defects in oscillatory media: Toward a classification
,”
SIAM J. Appl. Dyn. Syst.
3
,
1
68
(
2004
).
29.
Schneider
,
T. M.
,
Gibson
,
J. F.
, and
Burke
,
J.
, “
Snakes and ladders: Localized solutions of plane Couette flow
,”
Phys. Rev. Lett.
104
,
104501
(
2010
).
30.
Tobias
,
S. M.
,
Proctor
,
M. R. E.
, and
Knobloch
,
E.
, “
Convective and absolute instabilities of fluid flows in finite geometry
,”
Physica D
113
,
43
72
(
1998
).
31.
Ueda
,
K.-I.
, and
Nishiura
,
Y.
, “
A mathematical mechanism for instabilities in stripe formation on growing domains
,”
Physica D
241
,
37
59
(
2012
).
32.
Umbanhowar
,
P. B.
,
Melo
,
F.
, and
Swinney
,
H. L.
, “
Localized excitations in a vertically vibrated granular layer
,”
Nature
382
,
793
796
(
1996
).
33.
van Saarloos
,
W.
, “
Front propagation into unstable states
,”
Phys. Rep.
386
,
29
222
(
2003
).
You do not currently have access to this content.