The purpose of this paper is to study the dynamics of a square billiard with a non-standard reflection law such that the angle of reflection of the particle is a linear contraction of the angle of incidence. We present numerical and analytical arguments that the nonwandering set of this billiard decomposes into three invariant sets, a parabolic attractor, a chaotic attractor, and a set consisting of several horseshoes. This scenario implies the positivity of the topological entropy of the billiard, a property that is in sharp contrast with the integrability of the square billiard with the standard reflection law.

1.
E. G.
Altmann
,
G.
Del Magno
, and
M.
Hentschel
, “
Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics
,”
Europhys. Lett.
84
,
10008
10013
(
2008
).
2.
A.
Arroyo
,
R.
Markarian
, and
D. P.
Sanders
, “
Bifurcations of periodic and chaotic attractors in pinball billiards with focusing boundaries
,”
Nonlinearity
22
(
7
),
1499
1522
(
2009
).
3.
A.
Arroyo
,
R.
Markarian
, and
D. P.
Sanders
, “
Structure and evolution of strange attractors in non-elastic triangular billiards
,”
Chaos
22
,
026107
(
2012
).
4.
N. I.
Chernov
,
A.
Korepanov
, and
N.
Simanyi
, “
Stable regimes for hard disks in a channel with twisting walls
,”
Chaos
22
,
026105
(
2012
).
5.
N. I.
Chernov
and
R.
Markarian
,
Chaotic Billiards
, Volume 127 of Mathematical Surveys and Monographs (
AMS
,
Providence
,
2006
).
6.
C.
Robbinson
,
Dynamical Systems
(
CRC
,
1995
).
7.
G.
Del Magno
,
J.
Lopes Dias
,
P.
Duarte
,
J. P.
Gaivão
, and
D.
Pinheiro
, “
Properties of dissipative polygonal billiards
”.
8.
R.
Markarian
,
E. J.
Pujals
, and
M.
Sambarino
, “
Pinball billiards with dominated splitting
,”
Ergod. Theory Dyn. Syst.
30
(
6
),
1757
1786
(
2010
).
9.
D.
Szász
,
Hard Ball Systems and the Lorentz Gas
, Encyclopaedia of Mathematical Sciences, Mathematical Physics (
Springer
,
Berlin
,
2000
).
10.
S.
Tabachnikov
,
Billiards
, Volume 1 of Panor. Synth. (
Societe mathematique de France
,
1995
).
11.
H.-K.
Zhang
, “
Current in periodic Lorentz gases with twists
,”
Commun. Math. Phys.
3
,
747
776
(
2011
).
You do not currently have access to this content.