We discuss the phenomenon of stickiness in Hamiltonian systems. By visual examples of billiards, it is demonstrated that one must make a difference between internal (within chaotic sea(s)) and external (in vicinity of KAM tori) stickiness. Besides, there exist two types of KAM-islands, elliptic and parabolic ones, which demonstrate different abilities of stickiness.
REFERENCES
1.
A. J.
Lichtenberg
and M. A.
Lieberman
, Regular and Chaotic Dynamics
(Springer-Verlag, New York
, 1992
).2.
G. M.
Zaslavsky
, Hamiltonian Chaos and Fractional Dynamics
(Oxford University Press, Oxford
, 2008
).3.
4.
5.
L. A.
Bunimovich
, Chaos
11
, 1
(2001
).6.
E. G.
Altmann
, A. E.
Motter
, and H.
Kantz
, Chaos
15
, 033105
(2005
).7.
E. G.
Altmann
, A. E.
Motter
, and H.
Kantz
, Phys. Rev. E
73
, 026207
(2006
).8.
E. G.
Altmann
, Ph.D. dissertation, Wuppertal University
, Germany, (unpublished), http://tinyurl.com/egaltmann-thesis9.
E. G.
Altmann
, T.
Friedrich
, A. E.
Motter
, H.
Kants
, and A.
Richter
, Phys. Rev. E
77
, 016205
(2008
).10.
C. P.
Dettman
and O.
Georgiou
, J. Phys. A
44
, 195102
(2011
).11.
L. A.
Bunimovich
, Discrete Contin. Dyn. Syst. A
22
, 63
(2008
).12.
J.
Moser
, Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics
(Princeton University Press, NJ
, 2001
).13.
14.
L. A.
Bunimovich
, G. D.
Magno
, Commun. Math. Phys.
262
, 17
(2006
).15.
L. A.
Bunimovich
, G. D.
Magno
, Ergod. Theory Dyn. Syst.
28
, 1377
(2008
).16.
To the best of our knowledge, the first person who coined the term (Hamiltonian) “sytems with sharply divided phase space” was B. V. Chirikov. It happened in the discussion with L.A.B. on mushrooms in 2001 before the paper (Ref. 5) was published.
© 2012 American Institute of Physics.
2012
American Institute of Physics
You do not currently have access to this content.