We investigate the dynamics of systems of many coupled phase oscillators with heterogeneous frequencies. We suppose that the oscillators occur in M groups. Each oscillator is connected to other oscillators in its group with “attractive” coupling, such that the coupling promotes synchronization within the group. The coupling between oscillators in different groups is “repulsive,” i.e., their oscillation phases repel. To address this problem, we reduce the governing equations to a lower-dimensional form via the ansatz of Ott and Antonsen, Chaos 18, 037113 (2008). We first consider the symmetric case where all group parameters are the same, and the attractive and repulsive coupling are also the same for each of the M groups. We find a manifold L of neutrally stable equilibria, and we show that all other equilibria are unstable. For M ≥ 3, L has dimension M − 2, and for M = 2, it has dimension 1. To address the general asymmetric case, we then introduce small deviations from symmetry in the group and coupling parameters. Doing a slow/fast timescale analysis, we obtain slow time evolution equations for the motion of the M groups on the manifold L. We use these equations to study the dynamics of the groups and compare the results with numerical simulations.

1.
E.
Ott
and
T. M.
Antonsen
,
Chaos
18
,
037113
(
2008
).
2.
M. E. J.
Newman
,
SIAM Rev.
45
,
167
(
2003
).
3.
M.
Girvan
and
M. E. J.
Newman
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
7821
(
2002
).
4.
Y.
Kuramoto
in
International Symposium on Mathematical Problems in Theoretical Physics
, Lecture Notes in Physics Vol.
39
, edited by
H.
Araki
(
Springer-Verlag
,
Berlin
,
1975
).
5.
Y.
Kuramoto
,
Chemical Oscillators, Waves and Turbulence
(
Springer
,
New York
,
1984
).
7.
E.
Ott
,
Chaos in Dynamical Systems
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2002
), Cha
p
6
.
8.
J. A.
Acebron
,
L. L.
Bonilla
,
C. J. P.
Cincente
,
R.
Ritort
, and
R.
Spigler
,
Rev. Mod. Phys.
77
,
137
(
2005
).
9.
E.
Barreto
,
B. R.
Hunt
,
E.
Ott
, and
P.
So
,
Phys. Rev. E
77
,
036107
(
2008
).
10.
M.
Komarov
and
A.
Pikovsky
,
Phys. Rev. E
84
,
016210
(
2011
);
P. S.
Skardal
and
J. G.
Restrepo
, “Hierarchical Synchrony of Phase Oscillators in Modular Networks,” arXiv:1111.0921.
11.
H.
Hong
and
S. H.
Strogatz
,
Phys. Rev. Lett.
106
,
054102
(
2011
).
12.
E.
Ott
and
T. M.
Antonsen
,
Chaos
19
,
023117
(
2009
);
[PubMed]
E.
Ott
,
B.
Hunt
, and
T. M.
Antonsen
,
Chaos
21
,
025112
(
2011
).
[PubMed]
13.
L. M.
Alonso
and
G. B.
Mindlin
,
Chaos
21
,
023102
(
2011
);
[PubMed]
A.
Ghosh
,
D.
Roy
and
V. K.
Jirsa
,
Phys. Rev. E
80
,
041930
(
2009
);
M. M.
Abduelreheme
and
E.
Ott
,
Chaos
19
,
013129
(
2009
);
[PubMed]
L. M.
Childs
and
S. H.
Strogatz
,
Chaos
18
,
043128
(
2008
);
[PubMed]
S. A.
Marvel
and
S. H.
Strogatz
,
Chaos
19
,
013132
(
2009
);
[PubMed]
L. F.
Lafuerza
,
P.
Colet
, and
R.
Toral
,
Phys. Rev. Lett.
105
,
084101
(
2010
);
[PubMed]
K. H.
Nagai
and
H.
Kori
,
Phys. Rev. E
81
,
065202
(
2010
);
E. A.
Martens
,
E.
Barreto
,
S. H.
Strogatz
,
E.
Ott
,
P.
So
, and
T. M.
Antonsen
,
Phys. Rev. E
79
,
026204
(
2009
);
D.
Pazó
, and
E.
Montbrió
,
Phys. Rev. E
80
,
046215
(
2009
);
Z.
Levajic
and
A.
Pikovsky
,
Phys. Rev. E
82
,
056202
(
2010
);
P.
So
,
B. C.
Cotton
, and
E.
Barreto
,
Chaos
18
,
037114
(
2008
);
[PubMed]
Y.
Kawamura
,
H.
Nakao
,
K.
Arai
,
H.
Kori
, and
Y.
Kuramoto
,
Chaos
20
,
043110
(
2010
);
[PubMed]
A.
Pikovsky
and
M.
Rosenblum
,
Phys. Rev. Lett.
101
,
264103
(
2008
);
[PubMed]
C. R.
Lang
,
Chaos
19
,
013113
(
2009
);
[PubMed]
C. R.
Laing
,
Physica D
238
,
1569
(
2009
);
E. A.
Martens
,
Phys. Rev. E
82
,
016216
(
2010
);
W. S.
Lee
,
J. G.
Restrepo
,
E.
Ott
, and
T. M.
Antonsen
,
Chaos
14
,
023122
(
2011
);
G.
Barlev
,
T. M.
Antonsen
, and
E.
Ott
,
Chaos
14
,
025103
(
2011
).
14.
Another mechanism creating clustered groups of synchronized oscillators arises when the coupling phase dependence is dominated by a harmonic, i.e., sin[n(θj − θi)] replacing sin(θj − θi) in Eq. (1). Example, see
P. S.
Skardal
,
E.
Ott
, and
J. G.
Restrepo
, e-print arXiv 1107.1511.
15.
Example
C. M.
Bender
and
S. A.
Orszag
, Advanced Mathematical Methods for Scientists and Engineers (Springer, New York,
1978
), pp.
549
560
.
You do not currently have access to this content.