In this paper, an active backstepping design is proposed to achieve combination synchronization between three different chaotic systems: Lorenz system, Chen’s system, and Lü system. The proposed method is a systematic design approach and consists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of active control. Numerical simulations are shown to verify the feasibility and effectiveness of the proposed control technique.

1.
L. M.
Pecora
and
T. L.
Carroll
,
Phys. Rev. Lett.
64
,
821
(
1990
).
2.
L.
Kocarev
and
U.
Parlitz
,
Phys. Rev. Lett.
76
,
1816
(
1996
).
3.
M. G.
Rosenblum
,
A. S.
Pikovsky
and
J.
Kurths
,
Phys. Rev. Lett.
76
,
1804
(
1996
).
4.
S.
Taherionl
and
Y. C.
Lai
,
Phys. Rev. E
59
,
6247
(
1999
).
5.
F. Q.
Dou
,
J. A.
Sun
,
W. S.
Duan
and
K. P.
,
Phys. Scr.
78
,
015007
(
2008
).
6.
R.
Mainieri
and
J.
Rehacek
,
Phys. Rev. Lett.
82
,
3042
(
1999
).
7.
L.
Kocarev
and
U.
Parlitz
,
Phys. Rev. Lett.
76
,
1816
(
1996
).
8.
G. H.
Li
,
Chaos, Solitons Fractals
32
,
1786
(
2007
).
9.
E.
Ott
,
C.
Grebogi
, and
J. A.
Yorke
,
Phys. Rev. Lett.
64
,
1196
(
1990
).
10.
T.
Li
,
J. J.
Yu
, and
Z.
Wang
,
Commun. Nonlinear Sci. Numer. Simul.
14
,
1796
(
2009
).
11.
H. H.
Chen
,
G. J.
Sheu
,
Y. L.
Lin
, and
C. S.
Chen
,
Nonlinear Anal. Theory, Methods Appl.
70
,
4393
(
2009
).
12.
Y. M.
Lei
,
W.
Xu
, and
H. C.
Zheng
,
Phys. Lett. A
5343
,
153
(
2005
).
13.
M. T.
Yassen
,
Phys. Lett. A
360
,
582
(
2007
).
14.
S.
Hassan
and
A.
Aria
,
Commun. Nonlinear Sci. Numer. Simul.
14
,
508
(
2009
).
15.
J. J.
Yan
,
Y. S.
Yang
,
T. Y.
Chiang
, and
C. Y.
Chen
,
Chaos, Solitons Fractals
34
,
947
(
2007
).
16.
A.
Vaněčk
and
S.
Čelikovskš
,
Control Systems: From Linear Analysis to Synthesis of Chaos
(
Prentice-Hall
,
London
,
1996
).
18.
G. R.
Chen
and
T.
Ueta
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
9
,
1465
(
1999
).
19.
J. H.
and
G. R.
Chen
,
Int. J. Bifurcation Chaos Appl. Sci. Eng.
12
,
659
(
2002
).
You do not currently have access to this content.