Abstracting an effective theory from a complicated process is central to the study of complexity. Even when the underlying mechanisms are understood, or at least measurable, the presence of dissipation and irreversibility in biological, computational, and social systems makes the problem harder. Here, we demonstrate the construction of effective theories in the presence of both irreversibility and noise, in a dynamical model with underlying feedback. We use the Krohn-Rhodes theorem to show how the composition of underlying mechanisms can lead to innovations in the emergent effective theory. We show how dissipation and irreversibility fundamentally limit the lifetimes of these emergent structures, even though, on short timescales, the group properties may be enriched compared to their noiseless counterparts.

1.
J.
von Neumann
, in
Automata Studies
, edited by
C. E.
Shannon
and
J.
McCarthy
(
Princeton University
,
Princeton, NJ
,
1956
).
2.
L.
Glass
and
S. A.
Kauffman
,
J. Theor. Biol.
39
,
103
(
1973
).
3.
P. W.
Anderson
,
Science
177
,
393
(
1972
).
4.
J.
Rhodes
,
Applications of Automata Theory and Algebra
, edited by
C. L.
Nehaniv
(
World Scientific
,
Singapore
,
2010
) edited and corrected edition of 1971 text.
5.
J. P.
Crutchfield
and
K.
Young
,
Complexity, Entropy and the Physics of Information
, edited by
W. H.
Zurek
(
Addison-Wesley
,
Redwood City, Calif.
,
1989
) p.
223
.
6.
S.
Bonn
and
E. E. M.
Furlong
,
Curr. Opin. Genet. Dev.
18
,
513
(
2008
).
7.
E. H.
Davidson
,
J. P.
Rast
,
P.
Oliveri
,
A.
Ransick
,
C.
Calestani
,
C.-H.
Yuh
,
T.
Minokawa
,
G.
Amore
,
V.
Hinman
,
C.
Arenas-Mena
,
O.
Otim
,
C. T.
Brown
,
C. B.
Livi
,
P. Y.
Lee
,
R.
Revilla
,
M. J.
Schilstra
,
P. J. C.
Clarke
,
A. G.
Rust
,
Z.
Pan
,
M. I.
Arnone
,
L.
Rowen
,
R. A.
Cameron
,
D. R.
McClay
,
L.
Hood
, and
H.
Bolouri
,
Dev .Biol.
246
,
162
(
2002
).
8.
E. H.
Davidson
,
Dev. Biol.
357
(1),
35
(
2011
).
9.
J.
Macía
,
S.
Widder
, and
R.
Solé
,
J. Theor. Biol.
261
,
126
(
2009
).
10.
E. L.
Post
,
Bull. AMS
,
26
,
437
(
1920
).
11.
D.
Lau
,
Function Algebras on Finite Sets: a Basic Course on Many-Valued Logic and Clone Theory
, Springer Monographs in Mathematics (
Springer
,
New York
,
2006
).
12.
J.
Pearl
,
Causality
(
Cambridge University Press
,
New York
,
2009
).
13.
J.
Dassow
,
Structural Theory of Automata, Semigroups, and Universal Algebra
, NATO Science Series, edited by
V.
Kudryavtsev
,
I.
Rosenberg
, and
M.
Goldstein
(
Springer
,
Netherlands
,
2005
), Vol.
207
, pp.
77
108
.
14.
J.
Dassow
,
Completeness Problems in the Structural Theory of Automata
(
Akademie-Verlag
,
Berlin
,
1981
).
15.
N.
Pippenger
,
Theories of Computability
(
Cambridge University Press
,
New York
,
1996
).
16.
We use the word “deterministic” in the automata sense—i.e., a deterministic system is such that a letter-state pair is associated with a unique transition, δ : Σ ×QQ as opposed to δ : Σ × Q → Powerset[Q]. We do not consider non-deterministic automata explicitly in this paper; well-known methods allow one to construct a deterministic automata corresponding to any non-deterministic one. We use the word “probabilistic” to refer to situations in which a deterministic transition is chosen from a set probabilistically.
17.
As with “non-deterministic” and “probabilistic,” it is worth distinguishing “irreversible” and “dissipative.” Irreversibility need not be associated with any randomness, and can be a consequence of a completely non-probabilistic map, such as an irreversible computation that deletes input. Dissipation, by contrast, we associate with processes that can not be run backwards because different histories have been merged due to an ignorance of which randomly-chosen operation was performed. We return to this distinction at the end of Sec. IX .
18.
For clarity, we do not include the transitory 0 and 1 states in our automata pictures.
19.
A related notion is that of one machine “pre-processing” the environment and handing off its output to the next machine—this turns out to be equivalent to the description we use here, but harder to formulate in terms of our finite state automata.
20.
K.
Krohn
and
J. L.
Rhodes
,
Trans. Am. Math. Soc.
116
,
450
(
1965
).
21.
Homomorphic behavior means that there exists a map between the two semigroups that preserves multiplication. There is a homomorphic mapping φ between two groups in the case that multiplication is preserved: φ(a) · φ(b) = φ(a · b). Homomorphic mappings need not one-to-one, and in general the cascade will be larger than the original machine; in particular, the mapping may need to be restricted to a subautomaton of the cascade, and some states within this subautomaton may need to be identified with each other.
22.
S.
Eilenberg
,
Automata, Languages, and Machines
, Vol.
B
(
Academic Press
,
New York
,
1976
).
23.
W.
Holcombe
,
Algebraic Automata Theory
, Cambridge Studies in Advanced Mathematics (
Cambridge University Press
,
New York
,
1982
), Chap. 4.
24.
C.
Nehaniv
and
J.
Rhodes
,
Artificial Life
,
6
,
45
(
2000
).
25.
O.
Maler
, “
On the Krohn-Rhodes Cascaded Decomposition Theorem
,” in
Time for Verification: Essays in Memory of Amir Pnueli
, edited by
Z.
Manna
and
D. A.
Peled
, Lecture Notes in Computer Science Vol.
6200
(
Springer
,
Berlin
,
2010
), ISBN: 978-3-642-13753-2.
26.
A.
Egri-Nagy
and
C. L.
Nehaniv
, sgpdec—software package for hierarchical coordinatization of groups and semigroups, implemented in the GAP computer algebra system, Version 0.5.34 +,
2011
.
27.
A.
Egri-Nagy
and
C. L.
Nehaniv
,
Artificial Life
14
,
299
(
2008
).
28.
A.
Egri-Nagy
and
C. L.
Nehaniv
, e-prints arXiv:0911.5433 [math.GR],
2009
.
29.
GAP—Groups, Algorithms, and Programming, Version 4.4.12, The GAP Group (
2008
).
30.
O.
Maler
,
Theor. Comput. Sci.
,
145
,
391
(
1995
).
31.
N.
Pippenger
,
J. ACM
,
36
,
531
(
1989
).
32.
D. C.
Krakauer
and
A.
Sasaki
,
Proc. Biol. Sci.
269
,
2423
(
2002
).
33.
C.
Rao
and
D.
Wolf
,
Nature (London)
420
,
231
(
2002
).
34.
G.
Süel
,
R.
Kulkarni
,
J.
Dworkin
, and
J.
Garcia-Ojalvo
,
Science
315
,
1716
(
2007
).
35.
B.
Lehner
,
Mol. Syst.Biol.
4
,
170
(
2008
).
36.
A.
Bar-Even
,
J.
Paulsson
,
N.
Maheshri
, and
M.
Carmi
,
Nat. Genet.
38
,
636
(
2006
).
37.
G.
Hornung
,
PLoS Comput. Biol.
4
,
e8
(
2008
).
38.
H.
Jia
,
N.
Rochefort
,
X.
Chen
, and
A.
Konnerth
,
Nature (London)
464
,
1307
(
2010
).
39.
N. J.
Priebe
and
D.
Ferster
,
Nature (London)
464
,
1290
(
2010
).
40.
W. H.
Calvin
and
C. F.
Stevens
,
Science
155
,
842
(
1967
).
41.
W. H.
Calvin
and
C. F.
Stevens
,
J. Neurophysiol.
31
,
574
(
1968
).
42.
I.
Lampl
,
I.
Reichova
, and
D.
Ferster
,
Neuron
,
22
,
361
(
1999
).
43.
N.
Huggett
and
R.
Weingard
,
Synthese
102
,
171
(
1995
).
44.
S.
Weinberg
,
Physica A
,
96
,
327
(
1979
).
45.
J.
Polchinski
,
Nucl. Phys. B
,
231
,
269
(
1984
).
46.
H.
Georgi
,
Annu. Rev. Nucl. Part. Sci.
43
,
209
(
1993
).
47.
C. H.
Bennett
,
Int. J. Theor. Phys.
21
,
905
(
1982
).
48.
B.
Schneier
,
Applied Cryptography
(
John Wiley & Sons
,
New York
,
1996
), Chap. 16.
You do not currently have access to this content.