Understanding the mechanisms of distributed computation in cellular automata requires techniques for characterizing the emergent structures that underlie information processing in such systems. Recently, techniques from information theory have been brought to bear on this problem. Building on this work, we utilize the new technique of partial information decomposition to show that previous information-theoretic measures can confound distinct sources of information. We then propose a new set of filters and demonstrate that they more cleanly separate out the background domains, particles, and collisions that are typically associated with information storage, transfer, and modification in cellular automata.

1.
M.
Mitchell
,
J.
Crutchfield
, and
P.
Hraber
,
Physica D
75
,
361
(
1994
).
2.
S.
Wolfram
,
Physica D
10
,
1
(
1984
);
M.
Cook
,
Complex Syst.
15
,
1
(
2004
).
3.
J.
Hanson
and
J.
Crutchfield
,
Physica D
103
,
169
(
1997
).
4.
J.
Crutchfield
and
M.
Mitchell
,
Proc. Natl. Acad. Sci.
93
,
10742
(
1995
).
5.
M.
Marques
-Pita and
L.
Rocha
,
The 2011 IEEE Symposium on Artificial Life
,
IEEE Press
,
233
(
2011
).
6.
7.
C.
Shalizi
,
R.
Haslinger
,
J.
Rouquier
,
K.
Klinkner
, and
C.
Moore
,
Phys. Rev. E
73
,
036104
(
2006
).
8.
T.
Helvik
,
K.
Lindgren
, and
M.
Nordahl
,
Proc. Int. Conf. Cell. Automata Res. Ind.
3305
,
121
(
2004
).
9.
J.
Lizier
,
M.
Prokopenko
, and
A.
Zomaya
,
Chaos
20
,
037109
(
2010
);
[PubMed]
J.
Lizier
,
M.
Prokopenko
, and
A.
Zomaya
,
Phys. Rev. E
77
,
026110
(
2008
).
10.
P.
Williams
and
R.
Beer
, e-print http://arxiv.org/abs/1004.2515 (
2010
).
11.
Although Lizier et al focus on local versions of these measures, defined for individual states rather than variables, here we consider their averaged or global forms, since these provide for the most natural comparison with PI measures.
12.
T.
Schreiber
,
Phys. Rev. Lett.
85
,
461
(
2000
).
13.
P.
Williams
and
R.
Beer
, e-print http://arxiv.org/abs/1102.1507 (
2011
).
You do not currently have access to this content.