Synchronization between two coupled complex networks with fractional-order dynamics, hereafter referred to as outer synchronization, is investigated in this work. In particular, we consider two systems consisting of interconnected nodes. The state variables of each node evolve with time according to a set of (possibly nonlinear and chaotic) fractional-order differential equations. One of the networks plays the role of a master system and drives the second network by way of an open-plus-closed-loop (OPCL) scheme. Starting from a simple analysis of the synchronization error and a basic lemma on the eigenvalues of matrices resulting from Kronecker products, we establish various sets of conditions for outer synchronization, i.e., for ensuring that the errors between the state variables of the master and response systems can asymptotically vanish with time. Then, we address the problem of robust outer synchronization, i.e., how to guarantee that the states of the nodes converge to common values when the parameters of the master and response networks are not identical, but present some perturbations. Assuming that these perturbations are bounded, we also find conditions for outer synchronization, this time given in terms of sets of linear matrix inequalities (LMIs). Most of the analytical results in this paper are valid both for fractional-order and integer-order dynamics. The assumptions on the inner (coupling) structure of the networks are mild, involving, at most, symmetry and diffusivity. The analytical results are complemented with numerical examples. In particular, we show examples of generalized and robust outer synchronization for networks whose nodes are governed by fractional-order Lorenz dynamics.

2.
P.
Butzer
and
U.
Westphal
,
An Introduction to Fractional Calculus
(
World Scientific
,
Singapore
,
2000
).
3.
K. S.
Miller
and
B.
Ross
,
An Introduction to the Fractional Calculus and Fractional Diferential Equations
(
Wiley-Interscience publications
,
New York
,
1993
).
4.
T.
Hartley
,
C.
Lorenzo
, and
H.
Qammer
,
IEEE Trans. Circuits Syst. I
42
,
485
(
1995
).
5.
J.
Lu
and
G.
Chen
,
Chaos, Solitons Fractals
27
,
685
(
2006
).
7.
P.
Arena
,
R.
Caponetto
,
L.
Fortuna
, and
D.
Porto
, in
Proceedings ECCTD
(European Circuits Society, Budapest,
1997
), pp.
1259
1262
.
8.
W.
Ahmad
and
J.
Sprott
,
Chaos, Solitons Fractals
16
,
339
(
2003
).
9.
D.
Matignon
, in
Systems and Application Multi-Conference, IEEE-SMC Proceedings
(
IMACS
,
Lille, France
,
1996
), pp.
1259
1262
.
10.
W.
Deng
and
C.
Li
,
Physica A
353
,
61
(
2005
).
11.
M. M.
Asheghan
,
M. T. H.
Beheshti
, and
M.
Tavazoei
,
Commun. Nonlinear Sci. Numer. Simul.
16
,
1044
(
2011
).
12.
C.
Li
,
W.
Deng
, and
D.
Xu
,
Physica A
360
,
171
(
2006
).
13.
J. G.
Lu
,
Chaos, Solitons Fractals
27
,
519
(
2006
).
14.
H.
Deng
,
T.
Li
,
Q.
Wang
, and
H.
Li
,
Chaos, Solitons Fractals
41
,
962
(
2009
).
15.
Z. M.
Ge
and
W. R.
Jhuang
,
Chaos, Solitons Fractals
33
,
270
(
2007
).
17.
J.
Wang
and
Y.
Zhang
,
Phys. Lett. A
374
,
1464
(
2010
).
18.
Y.
Tang
and
J.
Fang
,
Commun. Nonlinear Sci. Numerical Simul.
15
,
401
(
2010
).
19.
W.
Sun
,
Y.
Li
,
C.
Li
, and
Y. Q.
Chen
,
Asian J. Control
15
,
1
(
2013
).
20.
This is an iterative algorithm that performs a local averaging over neighbor nodes, similar to a diffusion process.
21.
J.
Zhou
,
J.
Lu
, and
J.
L
,
Automatica
44
,
996
(
2008
).
22.
W.
Lin
and
H.
Ma
,
Phys. Rev. E
75
,
066212
(
2007
).
23.
Y. T. Z.
Wang
and
J.
Fang
,
Chaos
19
,
013112
(
2009
).
24.
The infectious diseases that spread across different communities provide an example of outer synchronization in the real world. Other applications can be found in Refs. 25 and 26 .
25.
C.
Li
,
W.
Sun
, and
J.
Kurths
,
Phys. Rev. E
76
,
046204
(
2007
).
26.
C.
Li
,
C.
Xu
,
W.
Sun
,
J.
Xu
, and
J.
Kurths
,
Chaos
19
,
013106
(
2009
).
27.
X.
Wu
,
W.
Zheng
, and
J.
Zhou
,
Chaos
19
,
013109
(
2009
).
28.
Z.
Li
and
X.
Xue
,
Chaos
20
,
023106
(
2010
).
29.
G.
Wang
,
J.
Cao
, and
J.
Lu
,
Physica A
389
,
1480
(
2010
).
30.
X. J.
Wu
and
H. T.
Lu
,
Chinese Phys. B
19
,
070511
(
2010
).
31.
See Eq. (16) in Ref. 30. This equality does not hold for general nonlinear systems such as, e.g., the Lorenz system.
32.
Specifically, we find sufficient and necessary conditions for the fractional-order differential equations governing the dynamics of the synchronization error, e¯(t), to have a fixed point at e¯(t)=0 .
33.
Two systems A and B are in a generalized synchronization status when the state of the system B can be obtained as a deterministic transformation of the state of the system A .
34.
I.
Podlubny
,
Fractional Differential Equations
(
Academic
,
New York
,
1999
).
35.
E.
Ahmed
,
A.
El-Sayed
, and
H.
El-Saka
,
J. Math. Anal. Appl.
325
,
542
(
2007
).
36.
E.
Jackson
and
I.
Grosu
,
Physica D
85
,
1
(
1995
).
37.
I.
Grosu
,
E.
Padmanaban
,
P.
Roy
, and
S.
Dana
,
Phys. Rev. Lett.
100
,
234102
(
2008
).
38.
Y.
Li
,
Y.
Chen
, and
I.
Podlubny
,
Automatica
45
,
1965
(
2009
).
39.
Y.
Li
,
Y.
Chen
, and
I.
Podlubny
,
Comput. Math. Appl.
59
,
1810
(
2010
).
40.
J.
Trigeassou
,
N.
Maamri
,
J.
Sabatier
, and
A.
Oustaloup
,
Signal Process.
91
,
437
(
2011
).
41.
M. H. B. S. S.
Delshad
and
M. M.
Asheghan
,
Commun. Nonlinear Sci. Numerical Simul.
16
,
3815
(
2011
).
42.
M. H. M. S.
Tavazoei
,
Physica A
387
,
57
(
2008
).
43.
M.
Tavazoei
and
M.
Haeri
,
Physica A
387
,
57
(
2008
).
44.
R. B.
Bapat
,
Graphs and Matrices
(
Springer
,
New York
,
2010
).
45.
C.
Wu
and
L.
Chua
,
IEEE Trans. Circuits Syst. I
42
,
430
(
1995
).
46.
S.
Boyd
,
L. E.
Ghaoui
,
E.
Feron
, and
V.
Balakrishnan
,
Linear Matrix Inequalities in System and Control Theory
(
Siam
,
Philadelphia
,
1994
).
47.
J.
Sabatier
,
M.
Moze
, and
C.
Farges
,
Comput. Math. Appl.
59
,
1594
(
2010
).
48.
A. M.
Lyapunov
,
Stability of Motion
(
Academic
,
New-York
,
1966
).
49.
H.
Ahn
and
Y.
Chen
,
Automatica
44
,
2985
(
2008
).
50.
N.
Rulkov
,
M.
Sushchik
,
L.
Tsimring
, and
H.
Abarbanel
,
Phys. Rev. E
51
,
980
(
1995
).
51.
T.
Yang
and
L.
Chua
,
Int. J. Bifurcation Chaos
9
,
215
(
1999
).
52.
For a matrix MRr×k, with entries mi,j, i = 1,…,r, j = 1,…,k, we say that M is bounded if every entry is bounded, i.e., there exists a constant c such that |mi,j| < c for all i and j .
53.
K.
Diethelm
,
Electron. Trans. Numer. Anal.
5
,
1
(
1997
).
54.
K.
Diethelm
,
N.
Ford
, and
A.
Freed
,
Nonlinear Dynam.
29
,
3
(
2002
).
55.
K.
Diethelm
,
N.
Ford
, and
A.
Freed
,
Numer. Algorithms
36
,
31
(
2004
).
56.
C.
Li
and
G.
Peng
,
Chaos Solitons Fractals
22
,
443
(
2004
).
You do not currently have access to this content.