We consider the synchronization of two clocks which are accurate (show the same time) but have pendulums with different masses. We show that such clocks hanging on the same beam beside the complete (in-phase) and antiphase synchronizations perform the third type of synchronization in which the difference of the pendulums’ displacements is a periodic function of time. We identify this period to be a few times larger than the period of pendulums’ oscillations in the case when the beam is at rest. Our approximate analytical analysis allows to derive the synchronizations conditions, explains the observed types of synchronizations, and gives the approximate formula for both the pendulums’ amplitudes and the phase shift between them. We consider the energy balance in the system and show how the energy is transferred between pendulums via oscillating beam allowing pendulums’ synchronization.

1.
Andronov
,
A.
,
Witt
,
A.
, and
Khaikin
,
S.
,
Theory of Oscillations
(
Pergamon
,
Oxford
,
1966
).
2.
Bennet
,
M.
,
Schatz
,
M. F.
,
Rockwood
,
H.
, and
Wiesenfeld
,
K.
, “
Huygens’s clocks
,”
Proc. R. Soc. London, Ser. A
458
,
563
(
2002
).
3.
Blekham
,
I. I.
,
Synchronization in Science and Technology
(
ASME
,
New York
,
1988
).
4.
Huygens
,
C.
,
Horoloqium Oscilatorium
(
Apud F. Muquet
,
Parisiis
,
1673
); English translation:
The Pendulum Clock
(
Iowa State University Press
,
Ames
,
1986
).
5.
Huygens
,
C.
, “
Letter to de Sluse, In: Oeuveres Completes de Christian Huygens
” (letters; no. 1333 of 24 February 1665, no. 1335 of 26 February 1665, no. 1345 of 6 March 1665) (Societe Hollandaise Des Sciences, Martinus Nijhoff, La Haye,
1893
).
6.
Czolczynski
,
K.
,
Perlikowski
,
P.
,
Stefanski
,
A.
, and
Kapitaniak
,
T.
, “
Clustering of Huygens’ clocks
,”
Prog. Theor. Phys.
122
,
1027
(
2009a
).
7.
Czolczynski
,
K.
,
Perlikowski
,
P.
,
Stefanski
,
A.
, and
Kapitaniak
,
T.
, “
Clustering and synchronization of Huygens’ clocks
,”
Physica A
388
,
5013
(
2009b
).
8.
Czolczynski
,
K.
,
Perlikowski
,
P.
,
Stefanski
,
A.
, and
Kapitaniak
,
T.
, “
Huygens’ odd sympathy experiment revisited
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
(
in press
).
9.
Dilao
,
R.
, “
Antiphase and in-phase synchronization of nonlinear oscillators: The Huygens’s clocks system
,”
Chaos
19
,
023118
(
2009
).
10.
Fradkov
,
A. L.
, and
Andrievsky
,
B.
, “
Synchronization and phase relations in the motion of two pendulum system
,”
Int. J. Non-linear Mech.
42
,
895
(
2007
).
11.
Kumon
,
M.
,
Washizaki
,
R.
,
Sato
,
J.
,
Mizumoto
,
R. K. I.
, and
Iwai
,
Z.
, “
Controlled synchronization of two 1-DOF coupled oscillators
,” in
Proceedings of the 15th IFAC World Congress
,
Barcelona
,
2002
.
12.
Lepschy
,
A. M.
,
Mian
,
G. A.
, and
Viaro
,
U.
, “
Feedback control in ancient water and mechanical clocks
,”
IEEE Trans. Educ.
35
,
3
(
1993
).
13.
Moon
,
F. C.
, and
Stiefel
,
P. D.
, “
Coexisting chaotic and periodic dynamics in clock escapements
,”
Phil. Trans. R. Soc. A
364
,
2539
(
2006
).
14.
Pantaleone
,
J.
, “
Synchronization of metronomes
,”
Am. J. Phys.
70
,
992
(
2002
).
15.
Pikovsky
,
A.
,
Roesenblum
,
M.
, and
Kurths
,
J.
,
Synchronization: An Universal Concept in Nonlinear Sciences
(
Cambridge University Press
,
Cambridge
,
2001
).
16.
Pogromsky
,
A. Yu.
,
Belykh
,
V. N.
, and
Nijmeijer
,
H.
, “
Controlled synchronization of pendula
,” in
Proceedings of the 42nd IEEE Conference on Design and Control
,
Maui, Hawaii
,
2003
, pp.
4381
4385
.
17.
Roup
,
A. V.
,
Bernstein
,
D. S.
,
Nersesov
,
S. G.
,
Haddad
,
W. S.
, and
Chellaboina
,
V.
, “
Limit cycle analysis of the verge and foliot clock escapement using impulsive differential equations and Poincare maps
,”
Int. J. Control
76
,
1685
(
2003
).
18.
Rowlings
,
A. L.
,
The Science of Clocks and Watches
(
Pitman
,
New York
,
1944
).
19.
Senator
,
M.
, “
Synchronization of two coupled escapement-driven pendulum clocks
,”
J. Sound Vib.
291
,
566
(
2006
).
20.
Stefanski
and
T.
Kapitaniak
, “
Estimation of the dominant Lyapunov exponent of non-smooth systems on the basis of maps synchronization
,”
Chaos, Solitons Fractals
15
,
233
(
2003
).
21.
Ulrichs
,
H.
,
Mann
,
A.
, and
Parlitz
,
U.
, “
Synchronization and chaotic dynamics of coupled mechanical metronomes
,”
Chaos
19
,
043120
(
2009
).
You do not currently have access to this content.