In this paper we propose a novel method for obtaining standard errors and confidence intervals for the correlation dimension estimated on an observed chaotic time series. This method is based on the U-Statistics theory and an ingenious combination of the moving block and parametric bootstrap procedures. We test the method on the basis of computer simulations for both clean and noisy series. We show that the distribution of the correlation dimension estimate obtained by our method agrees very well with the “true” distribution obtained by the Monte Carlo simulation. One of the main advantage of our method is the ability to estimate the distribution (and hence, the standard error) of the correlation dimension estimate using only one observed time series.

1.
F.
Takens
, in
Lecture Notes in Mathematics, Vol. 898. Dynamical Systems and Turbulence
, edited by
D. A.
Rand
and
L.-S.
Young
(
Springer-Verlag
,
Berlin
,
1981
), pp.
366
381
.
2.
P.
Grassberger
and
I.
Procaccia
,
Physica D
9
,
189
(
1983
).
3.
A. R.
Osborne
and
A.
Provenzale
,
Physica D
35
,
357
(
1989
).
5.
W.
Hoeffding
,
Ann. Statistics
19
,
293
(
1948
).
6.
M.
Denker
and
G.
Keller
,
Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gabiete
64
,
505
(
1983
).
7.
T.
Hsing
,
Ann. Statistics
19
,
1547
(
1991
).
8.
J.
Aaronson
,
R.
Burton
,
H.
Dehiling
,
D.
Gilat
,
T.
Hill
, and
B.
Weiss
,
Trans. Am. Math. Soc.
348
,
2845
(
1996
).
9.
S.
Borovkova
,
R.
Burton
, and
H.
Dehling
,
Trans. Am. Math. Soc.
353
,
4261
(
2001
).
10.
K.
Yoshihara
,
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gabiete
35
,
237
(
1976
).
11.
L.
Sardonini
, Ph.D. thesis,
Department of Statistics, University of Bologna
,
2007
.
12.
B. D.
Ripley
,
Stochastic Simulation
(
Wiley
,
New York
,
1987
).
13.
P.
Bühlmann
,
Stat. Sci.
17
,
52
(
2002
).
14.
D. N.
Politis
,
Stat. Sci.
18
,
219
(
2003
).
15.
H. K.
Künsch
,
Ann. Statistics
17
,
1217
(
1989
).
16.
R. Y.
Liu
and
K.
Singh
, in
Exploring the Limits of Bootstrap
, edited by
R.
LePage
and
L.
Billard
(
Wiley
,
New York
,
1992
), pp.
225
248
.
17.
P.
Hall
,
Stochastic Proc. Appl.
20
,
231
(
1985
).
18.
M. S.
Bartlett
,
Suppl. J. R. Stat. Soc.
8
,
27
(
1946
).
19.
S.
Gottlieb
,
P. B.
Mackenzie
,
H. B.
Thacker
, and
D.
Weingarten
,
Nucl. Phys. B
263
,
704
(
1986
).
20.
21.
B.
Efron
and
R. J.
Tibshirani
,
An Introduction to the Bootstrap
(
Chapman & Hall
,
New York
,
1993
).
22.
M.
Ding
,
C.
Grebogy
,
E.
Ott
,
T.
Sauer
, and
J. A.
Yorke
,
Phys. Rev. Lett.
70
,
3872
(
1993
).
23.
H.
Kantz
and
T.
Schreiber
,
Nonlinear Time Series Analysis
(
Cambridge University Press
,
Cambridge
,
1997
).
24.
R.
Hegger
,
H.
Kantz
, and
T.
Schreiber
,
Chaos
9
,
413
(
1999
).
25.
R Development Core Team, R: A language and environment for statistical computing,
R Foundation for Statistical Computing
, Vienna, Austria (
2005
). See http://www.R-project.org.
26.
N.
Golyandina
,
V.
Nekrutkin
, and
A.
Zhigljavsky
,
Analysis of Time Series Structure: SSA and Related Techniques
(
Chapman & Hall
,
New York
,
2001
).
27.
M.
Ghil
,
R. M.
Allen
,
M. D.
Dettinger
,
K.
Ide
,
D.
Kondrashov
,
M. E.
Mann
,
A.
Robertson
,
A.
Saunders
,
Y.
Tian
,
F.
Varadi
, and
P.
Yiou
,
Rev. Geophys.
40
,
3
1
(
2002
).
28.
R.
Vautard
,
P.
Yiou
, and
M.
Ghil
,
Physica D
58
,
95
(
1992
).
29.
M.
Dettinger
,
M.
Ghil
,
C.
Strong
,
W.
Weibel
, and
P.
Yiou
,
EOS Trans. Am. Geophys. Union
76
,
12
14
(
1995
).
30.
C.
Diks
,
Nonlinear Time Series Analysis: Methods and Applications
(
World Scientific Press
,
1999
).
You do not currently have access to this content.