In this paper we explore the concept of hierarchy as a quantifiable descriptor of ordered structures, departing from the definition of three conditions to be satisfied for a hierarchical structure: order, predictability, and pyramidal structure. According to these principles, we define a hierarchical index taking concepts from graph and information theory. This estimator allows to quantify the hierarchical character of any system susceptible to be abstracted in a feedforward causal graph, i.e., a directed acyclic graph defined in a single connected structure. Our hierarchical index is a balance between this predictability and pyramidal condition by the definition of two entropies: one attending the onward flow and the other for the backward reversion. We show how this index allows to identify hierarchical, antihierarchical, and nonhierarchical structures. Our formalism reveals that departing from the defined conditions for a hierarchical structure, feedforward trees and the inverted tree graphs emerge as the only causal structures of maximal hierarchical and antihierarchical systems respectively. Conversely, null values of the hierarchical index are attributed to a number of different configuration networks; from linear chains, due to their lack of pyramid structure, to full-connected feedforward graphs where the diversity of onward pathways is canceled by the uncertainty (lack of predictability) when going backward. Some illustrative examples are provided for the distinction among these three types of hierarchical causal graphs.

1.
Ash
,
R. B.
,
Information Theory
(New York, Dover
,
1990
).
2.
Bassett
,
D. S.
,
Bullmore
,
E.
,
Verchinski
,
B. A.
,
Mattay
,
V. S.
,
Weinberger
,
D. R.
, and
Meyer-Lindenberg
,
A.
, “
Hierarchical organization of human cortical networks in health and schizophrenia
,”
J. Neurosci.
28
,
9239
(
2008
).
3.
Clauset
,
A.
,
Moore
,
C.
, and
Newman
,
M. E. J.
, “
Hierarchical structure and the prediction of missing links in networks
,”
Nature
453
,
98
(
2008
).
4.
Corominas-Murtra
,
B.
,
Rodriguez-Caso
,
C.
,
Goñi
,
J.
, and
Solé
,
R. V.
, “
Topological reversibility and causality in feed-forward networks
,”
New J. Phys.
12
,
32767
, (
2010
).
5.
Cosentino-Lagomarsino
,
M.
,
Jona
,
P.
,
Bassetti
,
B.
, and
Isambert
,
H.
, “
Hierarchy and feedback in the evolution of the escherichia coli transcription network
,”
Proc. Natl. Acad. Sci. USA
104
,
5516
(
2007
).
6.
Cover
,
T. M.
, and
Thomas
,
J. A.
,
Elements of Information Theory
(
John Wiley and Sons
,
New York
,
1991
).
7.
Eldredge
,
N.
,
Unfinished synthesis: Biological Hierarchies and Modern Evolutionary Thought
(
Oxford University Press
,
New York
,
1985
).
8.
Estrada
,
E.
, “
Information mobility in complex networks
,”
Phys. Rev. E
80
,
026104
(
2009
).
9.
Goñi
,
J.
,
Corominas-Murtra
,
B.
,
Solé
,
R. V.
, and
Rodríguez-Caso
,
C.
, “
Exploring the randomness of directed acyclic networks
,”
Phys. Rev. E
82
,
066115
(
2010
).
10.
Gross
,
J.
, and
Yellen
,
J.
,
Graph Theory and Its Applications
(
CRC
,
Boca Raton, Florida
,
1998
).
11.
Hirata
,
H.
, and
Ulanowicz
,
R.
, “
Information theoretical analysis of the aggregation and hierarchical structure of ecological networks
,”
J. Theor. Biol.
116
,
321
(
1985
).
12.
Huberman
,
B. A.
, and
Hogg
,
T.
, “
Complexity and adaptation
,”
Phys. D
22
,
376
(
1986
).
13.
Khinchin
,
A. I.
,
Mathematical Foundations of Information Theory
(Dover Publications
,
1957
).
14.
Kolars
,
J. F.
, and
Nystuen
,
J. D.
,
Human Geography: Spatial Design in World Society
(McGraw-Hill
,
New York
,
1974
).
15.
Kuratowski
,
C.
, “
sur la notion de l’ordre dans la théorie des ensembles
,”
Fundam. Math.
2
,
161
(
1921
).
16.
Ma
,
H.-W.
,
Buer
,
J.
, and
Zeng
,
A.-P.
, “
Hierarchical structure and modules in the escherichia coli transcriptional regulatory network revealed by a new top-down approach
,”
BMC Bioinf.
5
,
199
(
2004
).
17.
McShea
,
D. W.
, “
The hierarchical structure of organisms
,”
Paleobiology
27
,
405
(
2001
).
18.
Meunier
,
D.
,
Lambiotte
,
R.
,
Ersche
,
A. F. K.
, and
Bullmore
,
E. T.
, “
Hierarchical modularity in human brain functional networks
,”
Front Neuroinf.
3
,
37
(
2009
).
19.
Miller
,
W.
, “
The hierarchical structure of ecosystems: Connections to evolution
,”
Evo. Edu. Outreach
1
,
16
(
2008
).
20.
Pattee
,
H. H.
,
Hierarchy Theory: The Challenge of Complex Systems
(
G. Braziller
,
New York
,
1973
).
21.
Rammal
,
R.
,
Toulouse
,
G.
, and
Virasoro
,
M.
, “
Ultrametricity for physicists
,”
Rev. Mod. Phys.
58
,
765
(
1986
).
22.
Ravasz
,
E.
,
Somera
,
A. L.
,
Mongru
,
D. A.
,
Oltvai
,
Z. N.
, and
Barabási
,
A. L.
, “
Hierarchical organization of modularity in metabolic networks
,”
Science
297
,
1551
(
2002
).
23.
Rodríguez-Caso
,
C.
,
Corominas-Murtra
,
B.
, and
Solé
,
R. V.
, “
On the basic computational structure of gene regulatory networks
,”
Mol. Biosyst.
5
,
1617
(
2009
).
24.
Sales-Pardo
,
M.
,
Guimerà
,
R.
,
Moreira
,
A. A.
, and
Amaral
,
L. A. N.
, “
Extracting the hierarchical organization of complex systems
,”
Proc. Natl. Acad. Sci. USA
104
,
15224
(
2007
).
25.
Shannon
,
C. E.
, “
A mathematical theory of communication
,”
Bell Syst. Tech. J.
27
,
379
(
1948
).
26.
Simon
,
H. A.
, “
The architecture of complexity
,”
Proc. Am. Philos. Soc.
106
,
467
(
1962
).
27.
Suppes
,
P.
,
Axiomatic Set Theory
(Dover, New York
,
1960
).
28.
Trusina
,
A.
,
Maslov
,
S.
,
Minnhagen
,
P.
, and
Sneppen
,
K.
, “
Hierarchy measures in complex networks
,”
Phys. Rev. Lett.
92
,
178702
(
2004
).
29.
Valverde
,
S.
, and
Solé
,
R. V.
, “
Self-organization versus hierarchy in open-source social networks
,”
Phys. Rev. E: Stat. Nonlin. Soft Matter. Phys.
76
,
046118
(
2007
).
30.
Vázquez
,
A.
,
Pastor-Satorras
,
R.
, and
Vespignani
,
A.
, “
Large-scale topological and dynamical properties of the internet
,”
Phys. Rev. E: Stat. Nonlin. Soft Matter. Phys.
65
,
066130
(
2002
).
31.
Whyte
,
L. L.
,
Wilson
,
A. G.
, and
Wilson
,
D. M.
, Editors,
Hierarchical Structures
(
Elsevier
,
New York
,
1969
).
32.
Yu
,
H.
, and
Gerstein
,
M.
, “
Genomic analysis of the hierarchical structure of regulatory networks
,”
Proc. Natl. Acad. Sci. USA
103
,
14724
(
2006
).
33.
We observe that this definition, although circular, captures the idea that a hierarchical system displays a kind of regularity that is repeated along the different scales of the system.
34.
Antihierarchy is not a new concept in the field of complex networks (Ref. 28). As we shall see, the hierarchical index is calculated by a difference of two entropy measures, and thus, hierarchical index allows negative and positive values. In this context, terms such as hierarchy, antihierarchy, and nonhierarchy (or alternatively positive, negative, or null hierarchy) could be interpreted with the same meaning as it occurs in the Pearson coefficient where positive correlation and negative correlation (anticorrelation) are opposite tendencies in contraposition with the null tendency of a noncorrelation.
You do not currently have access to this content.