Metabolic pathways must have coevolved with the corresponding enzyme gene sequences. However, the evolutionary dynamics ensuing from the interplay between metabolic networks and genomes is still poorly understood. Here, we present a computational model that generates putative evolutionary walks on the metabolic network using a parallel evolution of metabolic reactions and their catalyzing enzymes. Starting from an initial set of compounds and enzymes, we expand the metabolic network iteratively by adding new enzymes with a probability that depends on their sequence-based similarity to already present enzymes. Thus, we obtain simulated time courses of chemical evolution in which we can monitor the appearance of new metabolites, enzyme sequences, or even entire organisms. We observe that new enzymes do not appear gradually but rather in clusters which correspond to enzyme classes. A comparison with Brownian motion dynamics indicates that our system displays biased random walks similar to diffusion on the metabolic network with long-range correlations. This suggests that a quantitative molecular principle may underlie the appearance of punctuated equilibrium dynamics, whereby enzymes occur in bursts rather than by phyletic gradualism. Moreover, the simulated time courses lead to a putative time-order of enzyme and organism appearance. Among the patterns we detect in these evolutionary trends is a significant correlation between the time of appearance and their enzyme repertoire size. Hence, our approach to metabolic evolution may help understand the rise in complexity at the biochemical and genomic levels.

1.
S. L.
Miller
,
Science
117
,
528
(
1953
).
2.
W.
Martin
and
M. J.
Russell
,
Philos. Trans. R. Soc. London, Ser. B
362
,
1887
(
2007
).
3.
S. D.
Copley
,
E.
Smith
, and
H. J.
Morowitz
,
Bioorg. Chem.
35
,
430
(
2007
).
4.
P. A.
Bachmann
,
P. L.
Luisi
, and
J.
Lang
,
Nature (London)
357
,
57
(
1992
).
5.
P.
Walde
,
R.
Wick
,
M.
Fresta
,
A.
Mangone
, and
P. L.
Luisi
,
J. Am. Chem. Soc.
116
,
11649
(
1994
).
6.
D.
Segré
,
D.
Ben-Eli
,
D. W.
Deamer
, and
D.
Lancet
,
Origins Life Evol. Biosphere
31
,
119
(
2001
).
7.
S. A.
Kauffman
,
The Origins of Order: Self-Organization and Selection in Evolution
(
Oxford University Press
,
New York
,
1993
).
8.
H. J.
Morowitz
,
Beginnings of Cellular Life
(
Yale University Press
,
New Haven
,
2004
).
9.
F.
Dyson
,
Origins of Life
(
Cambridge University Press
,
Cambridge
,
1999
).
10.
S.
Granick
,
Ann. N.Y. Acad. Sci.
69
,
292
(
1957
).
11.
N. H.
Horowitz
,
Proc. Natl. Acad. Sci. U.S.A.
31
,
153
(
1945
).
12.
M.
Ycas
,
J. Theor. Biol.
44
,
145
(
1974
).
13.
R. A.
Jensen
,
Annu. Rev. Microbiol.
30
,
409
(
1976
).
14.
O.
Ebenhöh
,
T.
Handorf
, and
R.
Heinrich
,
Genome Inform.
15
,
35
(
2004
).
15.
T.
Handorf
,
O.
Ebenhöh
, and
R.
Heinrich
,
J. Mol. Evol.
61
,
498
(
2005
).
16.
O.
Ebenhöh
,
T.
Handorf
, and
R.
Heinrich
,
Genome Inform.
16
,
203
(
2005
).
17.
O.
Ebenhöh
,
T.
Handorf
, and
D.
Kahn
,
IEE Proc: Sys. Biol.
153
,
354
(
2006
).
18.
F.
Matthäus
,
C.
Salazar
, and
O.
Ebenhöh
,
PLOS Comput. Biol.
4
,
e1000049
(
2008
).
19.
J.
Raymond
and
D.
Segrè
,
Science
311
,
1764
(
2006
).
20.
S.
Maslov
,
S.
Krishna
,
T. Y.
Pang
, and
K.
Sneppen
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
9743
(
2009
).
21.
A.
Mithani
,
G. M.
Preston
, and
J.
Hein
,
Bioinformatics
25
,
1528
(
2009
).
22.
M.
Schütte
,
N.
Klitgord
,
D.
Segrè
, and
O.
Ebenhöh
,
Genome Inform.
22
,
156
(
2010
).
23.
P.
Bak
and
K.
Sneppen
,
Phys. Rev. Lett.
71
,
4083
(
1993
).
24.
N.
Eldredge
and
J. G.
Gould
, “
Punctuated equilibria: An alternative to phyletic gradualism
,”
Models in Paleobiology
, edited by
T.
Schopf
(
Freeman, Cooper
,
San Francisco
,
1972
), pp.
82
115
.
25.
S. F.
Elena
,
V. S.
Cooper
, and
R. E.
Lenski
,
Science
272
,
1802
(
1996
).
26.
M.
Kanehisa
and
S.
Goto
,
Nucleic Acids Res.
28
,
27
(
2000
).
27.
M.
Kanehisa
,
S.
Goto
,
M.
Furumichi
,
M.
Tanabe
, and
M.
Hirakawa
,
Nucleic Acids Res.
38
,
D355
(
2010
).
28.
H.
Kacser
and
R.
Beeby
,
J. Mol. Evol.
20
,
38
(
1984
).
29.
T.
Pfeiffer
,
O. S.
Soyer
, and
S.
Bonhoeffer
,
PLoS Biol.
3
,
e228
(
2005
).
30.
A.
Hintze
and
C.
Adami
,
PLOS Comput. Biol.
4
,
e23
(
2008
).
31.
D.
Gillepsie
,
J. Phys. Chem.
8
,
2340
(
1977
).
32.
T.
Handorf
,
N.
Christian
,
O.
Ebenhöh
, and
D.
Kahn
,
J. Theor. Biol.
252
,
530
(
2008
).
33.
N.
Christian
,
P.
May
,
S.
Kempa
,
T.
Handorf
, and
O.
Ebenhöh
,
Mol. Biosyst.
5
,
1889
(
2009
).
34.
R. L.
Tatusov
,
E. V.
Koonin
, and
D. J.
Lipman
,
Science
278
,
631
(
1997
).
35.
R. L.
Tatusov
,
M. Y.
Galperin
,
D. A.
Natale
, and
E. V.
Koonin
,
Nucleic Acids Res.
28
,
33
(
2000
).
36.
R. L.
Tatusov
,
D. A.
Natale
,
I. V.
Garkavtsev
,
T. A.
Tatusova
,
U. T.
Shankavaram
,
B. S.
Rao
,
B.
Kiryutin
,
M. Y.
Galperin
,
N. D.
Fedorova
, and
E. V.
Koonin
,
Nucleic Acids Res.
29
,
22
(
2001
).
37.
R. L.
Tatusov
,
N. D.
Fedorova
,
J. D.
Jackson
,
A. R.
Jacobs
,
B.
Kiryutin
,
E. V.
Koonin
,
D. M.
Krylov
,
R.
Mazumder
,
S. L.
Mekhedov
,
A. N.
Nikolskaya
,
B.
Sridhar Rao
,
S.
Smirnov
,
A. V.
Sverdlov
,
S.
Vasudevan
,
Y. I.
Wolf
,
J. J.
Yin
, and
D. A.
Natale
,
BMC Bioinf.
4
,
41
(
2003
).
38.
E.
Wilkinson
and
J.
Willemsen
,
J. Phys. A
16
,
3365
(
1983
).
39.
See supplementary material at http://dx.doi.org/10.1063/1.3530440 for additional figures and detailed calculation results.
40.
H. F.
Chau
,
Phys. Rev. E
49
,
4691
(
1994
).
41.
J. W.
Middleton
,
M. J.
Chacron
,
B.
Lindner
, and
A.
Longtin
,
Phys. Rev. E
68
,
021920
(
2003
).
42.
K.
Koelle
,
S.
Cobey
,
B.
Grenfell
, and
M.
Pascual
,
Science
314
,
1898
(
2006
).
43.
D. J.
Smith
,
A. S.
Lapedes
,
J. C.
de Jong
,
T. M.
Bestebroer
,
G. F.
Rimmelzwaan
,
A. D. M. E.
Osterhaus
, and
R. A. M.
Fouchier
,
Science
305
,
371
(
2004
).
44.
T.
Handorf
and
O.
Ebenhöh
,
Nucleic Acids Res.
35
,
W613
(
2007
).
45.
Q. W.
Chen
and
C. L.
Chen
,
Curr. Org. Chem.
9
,
989
(
2005
).
46.
Y.
Sobolevsky
and
E. N.
Trifonov
,
J. Mol. Evol.
61
,
591
(
2005
).
47.
Y.
Sobolevsky
and
E. N.
Trifonov
,
J. Mol. Evol.
63
,
622
(
2006
).
48.
Y.
Sobolevsky
,
Z. M.
Frenkel
, and
E. N.
Trifonov
,
J. Mol. Evol.
65
,
640
(
2007
).
49.
A.
Wagner
,
Proc. R. Soc. London, Ser. B
275
,
91
(
2008
).
50.
S.
Paczuski
,
M. S.
Maslov
, and
P.
Bak
,
Phys. Rev. E
53
,
414
(
1996
).
51.
C.
Adami
,
Phys. Lett. A
203
,
29
(
1995
).
52.
M.
Usher
,
M.
Stemmler
, and
Z.
Olami
,
Phys. Rev. Lett.
74
,
326
(
1995
).
53.
D.
Cox
and
L.
Lewis
,
The Statistical Analysis of Series and Events
(
Wiley
,
New York
,
1966
).
54.
C.
Gardiner
,
Handbook of Stochastic Methods
(
Springer
,
Berlin
,
1985
).
55.
D.
Cox
and
V.
Isham
,
Point Processes
(
Chapman and Hall
,
London
,
1980
).
56.
U.
Fano
,
Phys. Rev.
72
,
26
(
1947
).
57.
N.
van Kampen
,
Stochastic Processes in Physics and Chemistry
(
North-Holland
,
Amsterdam
,
2001
).
58.
A.
Wagner
,
Nat. Rev. Genet.
9
,
965
(
2008
).
59.
W.
Fontana
and
P.
Schuster
,
Science
280
,
1451
(
1998
).

Supplementary Material

You do not currently have access to this content.